Вы здесь

Теплообменник змеевик


Змеевиковые теплообменники

Змеевиковые теплообменники – это простейшие аппараты с небольшой теплопроизводительностью. Они бывают погружные и оросительные трубчатые из спирально согнутых труб с расположением витков по винтовой линии или из прямых труб, соединенных коленами с поворотом на 180°.

Схема погружного спирального теплообменника приведена на (рис. 2.1, а). Корпус такого теплообменника чаще всего выполняют цилиндрическим, особенно аппарата, работающего под давлением или под вакуумом. В корпусе могут быть размещены одна или несколько спиралей из труб с внутренним диаметром до 25 мм. Спирали ввальцовываются в верхнюю и нижнюю трубные решетки. Трубные решетки жестко закреплены во фланцевых соединениях между корпусом и крышками. Одна рабочая среда пропускается внутри труб, другая – в межтрубном пространстве. Для увеличения скорости потока в межтрубном пространстве, особенно среды, не изменяющей фазовое состояние, предусматривают устройства в виде цилиндра или каких-либо других перегородок, уменьшающие живое сечение. С увеличением скорости потока повышается коэффициент теплоотдачи с внешней стороны змеевика, а следовательно, и коэффициент теплопередачи. Коэффициент теплоотдачи в змеевиковых теплообменниках между стенкой и конденсирующимся паром или жидким теплоносителем с внутренней стороны достаточно высокий вследствие повышенных скоростей потока и криволинейного течения жидкости.

Длина змеевика должна быть рассчитана таким образом, чтобы не было переохлаждения конденсата или жидкости на выходе из теплообменника. При накоплении конденсата в змеевике ухудшается теплообмен, затрудняется отвод неконденсирующихся газов, увеличивается гидравлическое сопротивление, что в свою очередь вызывает повышение давления рабочей среды на входе в змеевик.

В тех случаях, когда расчетную поверхность теплообмена невозможно скомпоновать в виде одного змеевика, параллельно включают несколько секций змеевиков. Если в качестве греющей среды используется водяной пар, то его подают в змеевик сверху (конденсат отводится снизу), если жидкость – то направление ее движения выбирается в соответствии с условиями работы аппарата. Поверхность теплообмена погружных змеевиковых теплообменных аппаратов выполняется из стальных, медных, латунных, алюминиевых или свинцовых труб, а также из кислотоупорных материалов – стекла, керамики или пластмасс.

К недостаткам погружных змеевиковых теплообменников следует отнести большой их объем, а следовательно, большой расход металла на единицу поверхности. Практически невозможно механически очистить поверхность теплообмена.

Погружные змеевики применяют в качестве подогревателей, холодильников, конденсаторов при давлении внутри труб до 40·105 Па и в межтрубном пространстве до 16·105 Па.

Рис. 2.1 – Схемы змеевиковых теплообменников: а – погружного; б – оросительного; 1 – корпус; 2 – змеевик; 3 – внутренняя труба; 4 – крышка; 5 и 6 – патрубки; 7 – змеевик; 8 – распределительный желоб; 9 – сборный желоб

Оросительные змеевиковые теплообменники предназначаются для охлаждения жидких сред и конденсации пара. Их собирают из прямых горизонтальных труб, соединенных калачами (рис. 2.1, б). Пакеты таких змеевиков устанавливают и закрепляют на каркасе. Внутри труб змеевика проходит охлаждаемая среда, а снаружи поверхность орошается охлаждающей средой – водой или другой жидкостью. Над верхним рядом труб размещается желоб с перфорированным дном или с зубчатыми краями, служащими для распределения орошающей жидкости. Под нижним рядом труб размещается поддон для сбора этой жидкости и отвода ее в сборный резервуар. В многоярусных змеевиках необходимо устанавливать над каждой или через одну горизонтальную трубу распределительные зубчатые козырьки для равномерного распределения охлаждающей жидкости на нижерасположенной трубе. В некоторых случаях целесообразно организовать охлаждение змеевиков с частичным испарением орошающей жидкости. При испарительном охлаждении расход жидкости следует регулировать так, чтобы нижние змеевики не были «сухими».

Простота устройства, доступность для осмотра, ремонта и очистки труб, несколько меньший расход охлаждающей воды (жидкой среды) по сравнению с погружными змеевиковыми теплообменниками способствуют распространенному применению их в промышленности и на транспорте. В то же время необходимо отметить, что часть воды при таком способе охлаждения другого теплоносителя теряется, теплообменники чувствительны к колебаниям подачи воды в орошающий желоб, занимают много места.

vse-lekcii.ru

3.2 Змеевиковые теплообменники

Основным теплообменным эле­ментом является змеевик-труба, согнутая по определенному про­филю.

На рис. 7, а, б показаны погружные теплообменники с одним (а) и несколькими (б) спиральными змеевиками 1, по которым движется теплоноситель. Змеевики погружаются в жидкость (тепло­носитель II), находящуюся в корпусе аппарата.

Скорость движения жидкости мала вследствие большого сечения корпуса аппарата, что

обусловливает низкие значения коэффициентов теплоотдачи от наружной стенки змеевика к жидкости (или наоборот). Для увеличе­ния этого коэффициента теплоотдачи повышают скорость движения жидкости путем установки в корпусе аппарата , внутри змеевика, стакана. В этом случае жидкость движется по кольцевому пространству между стенками аппарата и стакана с повышенной скоростью. Часто в погружных теплообменниках устанавливают змеевики из прямых труб, соединен­ных калачами.

Вследствие простоты устройства, низкой стоимости, доступно­сти наружных стенок змеевика для чистки и осмотра, возможности работы змеевиков при высоких давлениях эти теплообменники находят достаточно широкое применение в промышленности. По­гружные змеевиковые теплообменники имеют сравнительно не­большую поверхность теплообмена (до 10-15 м2).

Довольно широкое применение в технике находят теплообменни­ки с наружными змеевиками (рис. 8), применение которых позво­ляет проводить процесс при высоких давлениях (до 6 МПа). К стен­кам аппаратов (обычно реакторов) снаружи приваривают змеевики, изготовленные из полуцилиндров или угловой стали (рис. 8, б, в). Если же необходимо использовать теплоноситель при еще более высоком давлении (например, перегретую воду при 25 МПа), то змеевик приваривают к корпусу аппарата многослойным швом (рис. 8, а).

К достоинствам аппарата с приваренными змеевиками следует отнести возможность разделения системы труб змеевика на не­сколько секций, питаемых независимо друг от друга. Включением и отключением отдельных секций становится возможным регулиро­вать обогрев или охлаждение. Кроме того, материал приваривае­мых змеевиков может быть отличным (более дешевым) от материа­ла корпуса аппарата.

Гораздо сложнее изготовить аппарат, в стены которого змеевик «залит» (рис. 8, г); ремонт такого аппарата практически невозмо­жен. Кроме того, коэффициент теплоотдачи в данном случае имеет низкое значение. Поэтому такие аппараты используют довольно редко.

Оросительные теплообменники применяют в основном для охла­ждения жидкостей и газов или конденсации паров.

Оросительный теплообменник представляет собой змеевик (рис 9) из разме­щенных друг над другом прямых труб 7, соединенных между собой калачами 2. Снаружи трубы орошают водой, которую подают в желоб 3 для равномерною распределения охлаждающей воды по всей длине верхней трубы змеевика. Отрабо­танная вода поступает в корыто 4 для сбора воды. По трубам протекает охлаждае­мый теплоноситель. [1]

Орошающая теплообменник вода при перетекании по наружным стенкам труб частично испаряется: при этом процесс теплообмена идет интенсивнее, вследствие чего расход воды на охлаждение в оросительных теплообменниках ниже, чем в холодильниках дру­гих типов. Но при этом происходит необратимая потеря воды. Во избежание сильного увлажнения воздуха в помещении ороситель­ные теплообменники обычно устанавливают на открытом воздухе. По этой же причине, если оросительный теплообменник необходи­мо установить в помещении, его приходится помещать в громозд­кие кожухи, которые подключают к системе вытяжной вентиляции. К недостаткам этих теплообменников следует отнести также гро­моздкость, неравномерность смачивания наружной поверхности труб, нижние ряды которых могут вообще не смачиваться и прак­тически не участвовать в теплообмене. Поэтому, несмотря на простоту изготовления, легкость чистки наружных стенок труб и другие достоинства, оросительные теплообменники находят огра­ниченное применение. [7]

studfiles.net

Змеевиковые теплообменники

Погружные теплообменники. В погружном змеевиковом теплообмен­нике (рис. VIII-17) капельная жидкость, газ или пар движутся по спи­ральному змеевику 1, выполненному из труб диаметром 15—75 мм, ко­торый погружен в жидкость, находящуюся в корпусе 2 аппарата. Вследствие большого объема корпуса, в котором находится змеевик, скорость жидкости в корпусе незначительна, что обусловливает низкие значения коэффициента теплоотдачи снаружи змеевика. Для его увеличения по­вышают скорость жидкости в корпусе путем установки в нем внутреннего стакана 3, но при этом значительно уменьшается полезно используемый объем корпуса аппарата. Вместе с тем в некоторых случаях большой объем жидкости, заполняющей корпус, имеет и положительное значение, так как обеспечивает более устойчивую работу теплообменника при колеба­ниях режима. Трубы змеевика крепятся на конструкции 4.

В теплообменниках этого типа змеевики часто выполняются также из прямых труб, соединенных калачами. При больших расходах среды, движущейся по змеевику из прямых труб, ее сначала направляют в об­щий коллектор, из которого она поступает в параллельные секции труб и удаляется также через общий коллектор. При таком параллельном вклю­чении секций снижается скорость и уменьшается длина пути потока, что приводит к снижению гидравлического сопротивления аппарата.

Теплоотдача в межтрубном пространстве погружных теплообменников малоинтенсивна, так как тепло передается практически путем свободной конвекции. Поэтому теплообменники такого типа работают при низких тепловых нагрузках. Несмотря на это погружные теплообменники нахо­дят довольно широкое применение вследствие простоты устройства, дешевизны, доступности для очистки и ремонта, а также удобства работы при высоких давлениях и в химически активных средах. Они применяются при поверхностях нагрева до 10—15 м2.

Если в качестве нагревающего агента в погружном теплообменнике используется насыщенный водяной пар, то отношение длины змеевика к его диаметру не должно превышать определенного предела; например, при давлениях пара 2·105—5·105 н/м2 (2—5 ат) это отношение не должно быть больше 200—275. В противном случае скопление парового конденсата в нижней части змеевика вызовет значительное снижение интенсивности теплообмена при значительном увеличении гидравлического сопротивле­ния.

Рис. VIII-17. Змеевиковый теплообменник:

1 — спиральный змеевик: 2 — корпус аппарата; 3 — внутренний стакан; 4 — кон­струкция для крепления змеевика.

Рис. VIII-18. Оросительный теплообмен­ник:

/ — секции прямых труб; 1 — калачи; 3 — рас­пределительный желоб; 4 — поддон.

Оросительные теплообменники. Такой теплообменник (рис. VIII-18) представляет собой змеевики 1 из размещенных друг над другом прямых труб, которые соединены между собой калачами 2. Трубы обычно распо­ложены в виде параллельных вертикальных секций (на рисунке показана только одна секция) с общими коллекторами для подачи и отвода охлаж­даемой среды. Сверху змеевики орошаются водой, равномерно распреде­ляемой в виде капель и струек, при помощи желоба 3 с зубчатыми краями. Отработанная вода отводится из поддона 4, установленного под змееви­ками.

Оросительные теплообменники применяются главным образом в ка­честве холодильников и конденсаторов, причем около половины тепла отводится при испарении охлаждающей воды. В результате расход воды резко снижается по сравнению с ее расходом в холодильниках других ти­пов. Относительно малый расход воды — важное достоинство ороситель­ных теплообменников, которые, помимо этого, отличаются также просто­той конструкции и легкостью очистки наружной поверхности труб.

Несмотря на то, что коэффициенты теплопередачи в оросительных теплообменниках, работающих по принципу перекрестного тока, несколько выше, чем у погружных, их существенными недостатками являются: громоздкость, неравномерность смачивания наружной поверхности труб, нижние концы которых при уменьшении расхода орошающей воды очень плохо смачиваются и практически не участвуют в теплообмене. Кроме того, к недостаткам этих теплообменников относятся: коррозия труб кис­лородом воздуха, наличие капель и брызг, попадающих в окружающее пространство.

В связи с испарением воды, которое усиливается при недостаточном орошении, теплообменники этого типа чаще всего устанавливают на откры­том воздухе; их ограждают деревянными решетками (жалюзи), главным образом для того, чтобы свести к минимуму унос брызг воды.

Оросительные теплообменники работают при небольших тепловых нагрузках и коэффициенты теплопередачи в них невысоки. Их часто изго­товляют из химически стойких материалов.

studfiles.net

Как сделать змеевик своими руками

Сделать змеевик своими руками можно из круглых или профильных труб. Для разных эксплуатационных условий подбирается тот или иной материал. Такие изделия используются для передачи тепла в водяных системах отопления. Они даже могут встраиваться в камины или печи, что позволяет использовать их в качестве котельной для обогрева всех комнат дома.

Полотенцесушитель — это тоже змеевиковый теплообменник.

Вы можете изготовить змеевик своими руками разной конструкции и из нескольких видов металла (сталь, медь, алюминий, чугун). Алюминиевые и чугунные изделия штампуются на заводах, так как требуемых условий для работы с этими металлами можно добиться только в производственных условиях. Без этого получится работать только со сталью или медью. Лучше всего использовать медь, так как она податлива и имеет высокую степень теплопроводности. Есть две схемы как сделать змеевик:

Винтовая схема подразумевается расположение витков спирали по винтовой линии. Теплоноситель в таких теплообменниках движется в одном направлении. При необходимости для увеличения тепловой мощности можно объединять несколько спиралей по принципу «труба в трубе».

Чтобы максимально сократить теплопотери нужно выбрать каким утеплителем лучше утеплить дом снаружи. Это также зависит от материала стен.

Делать выбор утеплителя для деревянного дома нужно исходя из паропроницаемости теплоизоляции.

В параллельной схеме теплоноситель постоянно меняет направление своего движения. Такой теплообменник изготавливается из прямых труб, соединенных коленом с поворотом на 180 градусов. В некоторых случаях, например, для изготовления регистра отопления, поворотные колени могут не использоваться. Вместо них устанавливается прямой байпас, который может находиться как на одном, так и на обоих торцах трубы.

Методы передачи тепла

Принцип работы змеевикового теплообменника заключается в том, чтобы нагревать одно вещество за счет тепла другого. Так, вода в теплообменнике может нагреваться открытым пламенем. В данном случае он будет выступать в роли теплоприемника. Но также змеевик и сам может выступать в качестве источника тепла. Например, когда по трубкам течет теплоноситель, нагретый в котле или посредством встроенного электрического ТЭНа, а его тепло передается воде из системы отопления. По сути, конечная цель теплопередачи – это нагреть воздух в помещении.

Где устанавливаются змеевиковые теплообменники

Метод теплообмена зависит от того, где устанавливается змеевик:

  • котел;
  • бойлер косвенного нагрева;
  • теплоаккумуляторы.

В котле стоят змеевики с оребрением.

В котле пламя нагревает воду в змеевике, а потом она расходится по всей системе, отдавая тепловую энергию в помещение конвективным методом через радиаторы отопления. Некоторые из них также относятся к категории змеевиковых теплообменников. Например, полотенцесушители и регистры отопления из круглой или профильной трубы.

Контакт с открытым пламенем накладывает некоторые требования к эксплуатационным качествам металла, который использовался в производстве. Акцент делается на надежности и долговечности. Поэтому чаще всего используют сталь и чугун. Последний считается самым лучшим вариантом.

В бойлере и теплоаккумуляторе приоритетное значение имеет скорость теплообмена и устойчивость к коррозии. В данном случае нет ничего лучше, чем медь. Главное, чтобы она не контактировала с алюминием. Между этими металлами происходит реакция, которая приводит к химической коррозии.

Как рассчитать теплообменник

Делать расчет змеевикового теплообменника нужно обязательно, иначе его тепловой мощности может не хватить на обогрев помещения. Система отопления предназначена для компенсации теплопотерь. Соответственно узнать точное количество требуемой тепловой энергии мы можем только исходя из теплопотерь здания. Сделать расчет достаточно сложно, поэтому в среднем берут 100 Вт на 1 м. кв при высоте потолков 2,7 м.

Между витками должен быть зазор.

Также для расчета потребуются следующие значения:

  • число Пи;
  • диаметр трубы, которая есть в наличии (возьмем 10 мм);
  • лямбда теплопроводности металла (для меди 401 Вт/м*К);
  • дельта температуры подачи и обратки теплоносителя (20 градусов).

Для определения длины трубы нужно общую тепловую мощность в Вт поделить на произведение вышеперечисленных множителей. Рассмотрим на примере медного теплообменника с требуемой тепловой мощностью в 3 кВт – это 3000 Вт.

3000/ 3,14 (Пи)*401 (лямбда теплопроводности)*20 (дельта температур)*0,01 (диаметр трубы в метрах)

Из данного расчета получается, что вам потребуется 11,91 м медной трубы диаметром 10 мм, чтобы тепловая мощность змеевика составляла 3 кВт.

Как сделать винтовой змеевик

После того как вы сделали расчет змеевика теплообменника можно приступать непосредственно к изготовлению. Винтовую конструкцию сделать достаточно просто. Диаметр петли нужно подбирать исходя из размера бака, в который будет осуществляться монтаж. Нужно чтобы трубы не прикасались к корпусу.

На сегодняшний день самый дешевый утеплитель для стен — это минвата. При этом он является и одним из лучших вариантов.

Сделав сравнение характеристик утеплителей, становится очевидным превосходство полимеров.

Накручивать витки нужно на круглую болванку. Медь легко гнется, поэтому не нужен никакой дополнительный инструмент. Желательно соблюдать небольшой отступ между витками, чтобы теплоноситель контактировал с трубой со всех сторон. Это увеличит площадь теплообмена, что позволит достигнуть максимальной тепловой мощности, которую мы рассчитывали.

Как сделать теплообменник из прямых труб

Чтобы изготовить змеевик по параллельной схеме нужно обладать навыками сварки металлов. Для таких работ используют стальные трубы, согнуть которые весьма проблематично, хотя имея хороший трубогиб, все же возможно. Но в большинстве случаев приходятся прибегать к сварке.

Стальной змеевик из круглых труб.

Алгоритм работы:

  • нарежьте ровные отрезки из стальных труб;
  • уложите их параллельно на ровной поверхности;
  • соедините их коленами с поворотом на 180 градусов – если таких колен нет, то можно сварить два уголка по 90 градусов;
  • в нижний и верхний торцы вварите заглушки с патрубком для подключения к системе отопления.

Кроме этого, в нижней части можно установить заглушку, по центру которой вырезается отверстие. Затем в это отверстие приваривается гайка. Ее внутренний диаметр должен подходить под стандартный электрический ТЭН. В таком случае можно будет использовать самодельный теплообменник как электрический обогреватель.

utepleniedoma.com

Как сделать теплообменник для отопления своими руками

Главная » Отопление » Как сделать теплообменник для отопления своими руками

Теплообменник своими руками собрать не слишком сложно, но требуется правильно подобрать его тип и конструкцию. Теплообменником называют любое устройство, способное за короткий промежуток времени передавать тепловую энергию на определенное расстояние. В сущности, так можно назвать даже самую простую батарею отопления (радиатор). И если в городских квартирах с системой отопления все более или менее понятно и давно просчитано на этапе планирования строения, то владельцы частных жилых домов все чаще задумываются над обустройством с помощью теплообменников отопительных и варочных печей либо каминов.

Вернуться к оглавлению

Преимущества использования

Печь с теплообменником намного эффективнее обогревает дом по нескольким причинам:

  1. Обычная печь имеет очень низкий КПД. Судите сами: температура дыма на выходе из дымохода может составлять более 500ºC (при наличии небольшого количества «колодцев» в печи и большой высоте трубы). Теплообменник же потребляет много тепла и равномерно распределяет его по всей квартире.
  2. Если вы по неосторожности «перекалили» печь отопления, то на ней обязательно появятся трещины в штукатурке, может «съехать» облицовочная плитка, частично будут повреждены швы между слоями кирпича. Печь с теплообменником от подобных неприятностей защищена: тепло будет отводиться, и кирпичная кладка не сможет получить тепловое расширение сверх нормы.

Теплообменник для печи своими руками можно изготовить из различных материалов, и конструкция таких устройств тоже может быть различной. Самая простая схема — вмонтировать в печь радиатор отопления, выведя наружу 2 трубки и закольцевав с системой отопления через расширитель. Такая система отопления хоть и потребует от вас большого объема работ, но функционировать она будет наилучшим образом. Народные умельцы уже не раз использовали с успехом такой простой метод, даже расширив его: радиаторы монтируются в камине, отопительной или варочной печи, и вся эта конструкция объединена в кольцо. У такой системы отопления очень высокий КПД, экономия средств на отоплении уже за 2 года вернет хозяину всю стоимость материалов, которые были израсходованы, и работ. Но такая конструкция не может в полной мере являться именно теплообменником.

Теплообменники представляют собой устройства, предназначенные для отвода тепла от имеющихся конструкций с минимальным вмешательством в них или без произведения конструктивных изменений.

Вернуться к оглавлению

Разновидности печных теплообменников

Условно принято выделять несколько типов теплообменников:

  1. Плоскостные (поверхностные), где передача тепловой энергии осуществляется через контакт 2 независимых систем. Чем больше плоскость соприкосновения, тем выше теплопередача.
  2. Регенеративный теплообменник, где к специальной насадке поочередно подается горячая и холодная среда, за счет чего и происходит регулировка температур.
  3. Смесительные теплообменники, в которых смешиваются жидкости или газы разных температур и консистенции. Используются такие смесительные теплообменники для обеспечения дополнительных контуров от имеющихся готовых отопительных систем.

В отдельную группу можно вынести роторный теплообменник (рекуператор). Его задача заключается в том, чтобы возвращать часть отходящего тепла. В действительности это смесительные теплообменники, где передача тепловой энергии от более теплого воздуха холодному осуществляется через тонкие стенки медной трубы.

Поверхностные варианты в народе пользуются наибольшей популярностью, поскольку они просты в конструкции и надежны в эксплуатации. Такой теплообменник своими руками может сделать практически каждый мастер. Наиболее популярны 2 вида устройств:

  • пластинчатые, где создается набор кассет, собранных в замысловатые лабиринты, между кассетами пластин движется горячая жидкость (или газ), за счет этого корпус устройства нагревается;
  • змеевики, для изготовления которых используется любая металлическая трубка.

Предпочтительнее использование медной трубы, так как ее легко гнуть, она обладает высокой теплоемкостью и предельным коэффициентом теплопередачи. К тому же медный контур наименее подвержен коррозии и засорению известковыми отложениями. Изготовить теплообменник в виде змеевика можно и из алюминиевой или стальной трубки, но в первом случае теплообмен будет значительно ниже, так как свойства материала будут хуже, а во втором случае вам для изготовления потребуется трубогиб. Змеевик из металлопласта пригоден только при незначительных температурах и не допускает прямого контакта с огнем.

Труба в трубе еще один практичный вид. Водяной теплообменник такого вида обладает не очень высоким КПД, но его бывает проще интегрировать в готовые системы отопления.

Вернуться к оглавлению

Инструменты для изготовления

А теперь рассмотрим вопрос о том, как сделать теплообменник для обычной кирпичной печи. Для начала вам необходимо запастись материалами и инструментами. Будут нужны:

  • металлические трубы (диаметром не менее 2,5 см, меньший диаметр замедляет движение жидкости и работу всей системы);
  • болгарка, электросварка;
  • устройство для нарезания резьбы;
  • ФУМ-лента и пакля.

Вернуться к оглавлению

Порядок выполнения работ

Изготовить теплообменник будет очень просто: это 2 горизонтальные трубы, между которыми наваривается батарея из нескольких кусков труб того же диаметра. Длина батареи будет зависеть от размеров топочного отделения кирпичной печи (или камина). Обычно бывает достаточно батареи из 5-9 труб.

Выход для воды обеспечивается в верхней части устройства, для подвода холодной жидкости используется штуцер в нижней части. На обоих патрубках нарезается резьба для подключения к системе отопления. Устанавливается конструкция вертикально, и ее положение постоянно контролируется в процессе кладки печи. Печной теплообменник может быть установлен и горизонтально (непосредственно над местом расположения огня). Эффективность будет значительно выше. Но здесь может быть один нюанс: конструкция будет прогреваться сильнее, поэтому существует вероятность, что крепежные элементы в значительной степени прогреются, получат расширение и повредят кирпичную кладку.

В верхней части печи (между слоями) можно уложить горизонтально несколько рядов керамических трубок, концы которых будут выходить наружу. Так вы обеспечите дополнительно воздушный теплообменник.

По завершении кладки кирпича вам необходимо подсоединить самодельный теплообменник к системе отопления. Не забудьте обеспечить ее расширителем. Без этого движение жидкости по системе может и не произойти.

Все соединения уплотняем ФУМ-лентой или паклей. Резиновые прокладки здесь малоэффективны. Печь с теплообменником должна высохнуть в течение 5-7 дней, и только после этого можно провести контрольную топку. Это и будет ответ на вопросы: правильно ли сложена печь и как проверить теплообменник? В идеале первое тепло вы должны ощутить от батарей отопления, так как вода в системе прогреется быстрее, чем кирпич.

Теплообменник для печки аналогичного типа можно сделать своими руками и для бани, если в ней предусмотрена отопительная конструкция из кирпича. В этом случае целесообразно обеспечить соединение на 2 контура: один будет обеспечивать подогрев пола, второй согреет воду для моечного отделения. Наличие специального котла в этом случае не потребуется.

У кирпичных печей для бани, обеспеченных системой теплообмена, есть не только преимущество в экономии. Тепло от них за счет инфракрасного излучения выходит более устойчивым, воздух в парилке будет чуть более сухим.

moigarazh.ru

Как сделать змеевик своими руками

Сделать змеевик своими руками можно из круглых или профильных труб. Для разных эксплуатационных условий подбирается тот или иной материал. Такие изделия используются для передачи тепла в водяных системах отопления. Они даже могут встраиваться в камины или печи, что позволяет использовать их в качестве котельной для обогрева всех комнат дома.

Виды змеевиковых теплообменников

Полотенцесушитель — это тоже змеевиковый теплообменник.

Вы можете изготовить змеевик своими руками разной конструкции и из нескольких видов металла (сталь, медь, алюминий, чугун). Алюминиевые и чугунные изделия штампуются на заводах, так как требуемых условий для работы с этими металлами можно добиться только в производственных условиях. Без этого получится работать только со сталью или медью. Лучше всего использовать медь, так как она податлива и имеет высокую степень теплопроводности. Есть две схемы как сделать змеевик:

Винтовая схема подразумевается расположение витков спирали по винтовой линии. Теплоноситель в таких теплообменниках движется в одном направлении. При необходимости для увеличения тепловой мощности можно объединять несколько спиралей по принципу «труба в трубе».

Чтобы максимально сократить теплопотери нужно выбрать каким утеплителем лучше утеплить дом снаружи. Это также зависит от материала стен.

Делать выбор утеплителя для деревянного дома нужно исходя из паропроницаемости теплоизоляции.

В параллельной схеме теплоноситель постоянно меняет направление своего движения. Такой теплообменник изготавливается из прямых труб, соединенных коленом с поворотом на 180 градусов. В некоторых случаях, например, для изготовления регистра отопления, поворотные колени могут не использоваться. Вместо них устанавливается прямой байпас, который может находиться как на одном, так и на обоих торцах трубы.

Методы передачи тепла

Принцип работы змеевикового теплообменника заключается в том, чтобы нагревать одно вещество за счет тепла другого. Так, вода в теплообменнике может нагреваться открытым пламенем. В данном случае он будет выступать в роли теплоприемника. Но также змеевик и сам может выступать в качестве источника тепла. Например, когда по трубкам течет теплоноситель, нагретый в котле или посредством встроенного электрического ТЭНа, а его тепло передается воде из системы отопления. По сути, конечная цель теплопередачи – это нагреть воздух в помещении.

Где устанавливаются змеевиковые теплообменники

Метод теплообмена зависит от того, где устанавливается змеевик:

  • котел;
  • бойлер косвенного нагрева;
  • теплоаккумуляторы.

В котле стоят змеевики с оребрением.

В котле пламя нагревает воду в змеевике, а потом она расходится по всей системе, отдавая тепловую энергию в помещение конвективным методом через радиаторы отопления. Некоторые из них также относятся к категории змеевиковых теплообменников. Например, полотенцесушители и регистры отопления из круглой или профильной трубы.

Контакт с открытым пламенем накладывает некоторые требования к эксплуатационным качествам металла, который использовался в производстве. Акцент делается на надежности и долговечности. Поэтому чаще всего используют сталь и чугун. Последний считается самым лучшим вариантом.

В бойлере и теплоаккумуляторе приоритетное значение имеет скорость теплообмена и устойчивость к коррозии. В данном случае нет ничего лучше, чем медь. Главное, чтобы она не контактировала с алюминием. Между этими металлами происходит реакция, которая приводит к химической коррозии.

Как рассчитать теплообменник

Делать расчет змеевикового теплообменника нужно обязательно, иначе его тепловой мощности может не хватить на обогрев помещения. Система отопления предназначена для компенсации теплопотерь. Соответственно узнать точное количество требуемой тепловой энергии мы можем только исходя из теплопотерь здания. Сделать расчет достаточно сложно, поэтому в среднем берут 100 Вт на 1 м. кв при высоте потолков 2,7 м.

Между витками должен быть зазор.

Также для расчета потребуются следующие значения:

  • число Пи;
  • диаметр трубы, которая есть в наличии (возьмем 10 мм);
  • лямбда теплопроводности металла (для меди 401 Вт/м*К);
  • дельта температуры подачи и обратки теплоносителя (20 градусов).

Для определения длины трубы нужно общую тепловую мощность в Вт поделить на произведение вышеперечисленных множителей. Рассмотрим на примере медного теплообменника с требуемой тепловой мощностью в 3 кВт – это 3000 Вт.

3000/ 3,14 (Пи)*401 (лямбда теплопроводности)*20 (дельта температур)*0,01 (диаметр трубы в метрах)

Из данного расчета получается, что вам потребуется 11,91 м медной трубы диаметром 10 мм, чтобы тепловая мощность змеевика составляла 3 кВт.

Как сделать винтовой змеевик

После того как вы сделали расчет змеевика теплообменника можно приступать непосредственно к изготовлению. Винтовую конструкцию сделать достаточно просто. Диаметр петли нужно подбирать исходя из размера бака, в который будет осуществляться монтаж. Нужно чтобы трубы не прикасались к корпусу.

На сегодняшний день самый дешевый утеплитель для стен — это минвата. При этом он является и одним из лучших вариантов.

Сделав сравнение характеристик утеплителей, становится очевидным превосходство полимеров.

Накручивать витки нужно на круглую болванку. Медь легко гнется, поэтому не нужен никакой дополнительный инструмент. Желательно соблюдать небольшой отступ между витками, чтобы теплоноситель контактировал с трубой со всех сторон. Это увеличит площадь теплообмена, что позволит достигнуть максимальной тепловой мощности, которую мы рассчитывали.

Как сделать теплообменник из прямых труб

Чтобы изготовить змеевик по параллельной схеме нужно обладать навыками сварки металлов. Для таких работ используют стальные трубы, согнуть которые весьма проблематично, хотя имея хороший трубогиб, все же возможно. Но в большинстве случаев приходятся прибегать к сварке.

Стальной змеевик из круглых труб.

Алгоритм работы:

  • нарежьте ровные отрезки из стальных труб;
  • уложите их параллельно на ровной поверхности;
  • соедините их коленами с поворотом на 180 градусов – если таких колен нет, то можно сварить два уголка по 90 градусов;
  • в нижний и верхний торцы вварите заглушки с патрубком для подключения к системе отопления.

Кроме этого, в нижней части можно установить заглушку, по центру которой вырезается отверстие. Затем в это отверстие приваривается гайка. Ее внутренний диаметр должен подходить под стандартный электрический ТЭН. В таком случае можно будет использовать самодельный теплообменник как электрический обогреватель.

utepleniedoma.com

Что такое теплообменник

Все физические опыты и эксперименты, относительно тепла, происходят с весьма условными и приблизительными значениями, так как тепло имеет свойство мгновенно рассеиваться и передаваться. По существу, это определенный вид энергии, который обладает свойством очень быстро перетекать в другие формы.

Люди различных эпох, профессий и вероисповедания постоянно сталкиваются с необходимостью передачи тепла от одного источника или предмета к другому. Даже холод передается теми же способами, что и тепло.

К примеру, в современном холодильнике используется теплообменник, несмотря на то, что по нему “течет” жидкость с отрицательной температурой – фреон. Основной принцип работы похож на тепловой аккумулятор

Так ли сложно сделать теплообменник своими руками ?

Самым главным аспектом, который существенно влияет на качество и эффективность работы теплообменника, является материал. Следующей по значимости идет конструкция, схема. Различные материалы имеют радикально разный уровень проводимости тепла. Пластик, который используется для формовки труб, имеет проводимость, которая в две сотни раз меньше, чем кусок стали такого же объема.

В свою очередь, стальная пластина определенной площади проигрывает в более чем семь раз подобному аналогу из меди. Рекордсменом по работе с теплом является вольфрам. Он является наиболее тугоплавким и наименее восприимчивым к теплу металлом. На данный момент, существуют композитные материалы, которые превышают “короля тугоплавкости”, но их цена настолько высока, что для использования в бытовых нуждах такого материала, мягко говоря, не очень разумно.

Итак, как и большинство предметов, созданных человеком, всё начинается на стадии мыслительного процесса. Следует определиться, зачем и для чего необходима рассматриваемая вещь. После осознания ответов, идет стадия разработки конструкции, которая учитывает все тонкости и особенности поставленной задачи. Если это теплообменник, который необходим для обогрева пола, то под стяжку просто укладываются трубы и закольцовываются в систему отопления. Затем пол выравнивается и накладывается напольное покрытие.

Если имеется необходимость равномерно распределять тепло вокруг чего-то небольшого или наоборот, охлаждать, то можно прибегнуть к простейшему способу. Намотать медную трубочку на круглый предмет, который будет больше предполагаемой вещи. Получится нехитрая конструкция, которая называется змеевик.

С помощью такого змеевика, помещенного в лёд, можно легко охлаждать что-либо. Следует упомянуть, что есть небольшая хитрость: холод всегда старается опуститься вниз, в то время, как тепло постоянно пытается подняться вверх. Если соединить края медной трубочки, с водой или другим веществом внутри, то в ней будет постоянно происходить циркуляции. Это при условии, что рядом будет источник тепла, а длина будет достаточной, чтобы успеть охладить внутренности.

Чтобы сделать простейший теплообменник, который будет просто работать, достаточно меди и вентилятора. Медь распределяется по поверхности корпуса вентилятора, перед потоком холодного воздуха, подводится к месту, где необходимо забрать тепло и возвращается к противоположному концу.

Причем эту же конструкцию можно использовать, как дополнительный охладитель комнаты. С медью делается то же самое, только оба края подводятся к чему-то, более холодному. Такая схема подразумевает наличие внутри жидкости и охлаждающего элемента рядом. Это может быть даже ведро со льдом. Таким образом, можно значительно снизить температуру воздуха в комнате.

Ещё одним простым примером есть автомобильный радиатор. После выгибания труб, по необходимому шаблону, к ним припаиваются поперечные пластинки небольшой толщины, но в очень больших количествах. Они играют роль громадного массива рассеивающей поверхности. Но такая схема требует дополнительного насоса, который будет постоянно качать в одном направлении жидкость, которая находится внутри.

На самом деле, сделать теплообменник своими руками, не так уж и сложно. В каждом доме, в той или иной форме, присутствует подобная вещь. Скорее всего, у большинства из читателей есть батарея и сушилка для полотенец. А те, у кого есть не газовая печь, наверняка видели нехитрое приспособление. Это может быть просто сплетение труб из различного материала, которое находится под или внутри агрегатом для отопления и приготовления пищи. Оно, сцепление, соединено с батареями системой носителей жидкости различного диаметра.

Как видно из вышесказанного, создать подобную вещь сможет любой, кто имеет элементарные инструменты, желание и необходимость, а данное руководство поможет разобраться в принципе работы, тонкостях и различных аспектах.

boldproject.ru

Теплообменник своими руками: классификация, способ изготовления

Любая система отопления включает основной из элементов – теплообменник. Он выполняет функцию передачи тепла от генератора к теплоносителю.

Большой выбор отопительного оборудования на рынке не ограничивает желание хозяйственников изобретать свои модели, усовершенствованные и конструктивно простые.

Посмотрите видео как сделать теплообменник самому

Особенности и принцип работы

Среда в теплообменнике бывает нескольких видов:

— жидкой;

— в виде пара;

— газообразной.

Самым простой конструкцией считается комнатный радиатор, наполненный водой. На отдачу тепла влияет и материал, используемый для изготовления устройства. Наилучший эффект согласно физическим показателям дают медь и серебро. Стальные и пластиковые изделия уступают медным в 6-8 раз. Поэтому перед выбором материала следует учесть эффективность эксплуатации.

Принцип работы теплообменника заключается в циркуляции воды по змеевику и распределении по всему контуру, включая радиаторы. По обратной трубе жидкость возвращается в остывшем виде. Конструкция размещается в камере отопительного прибора, поэтому при самостоятельном изготовлении следует учитывать её габариты.

Классификация теплообменников

• Конструкции различаются следующими видами:

— поверхностные функционируют благодаря промежуточному контакту двух сред, вследствие чего происходит нагрев теплоносителя;

Читайте также:  Виды систем канализации для загородного дома

— регенеративные включают подачу холодной и горячей воды для получения необходимого температурного режима путём её нагрева или охлаждения;

— смесительные осуществляют работу путём смешивания двух сред разной температуры.

• По назначению теплообменники бывают:

— нагревательными (разогретый газ или жидкость циркулируют по контуру);

— охладительными (принцип работы основан на контакте жидкости и холодного газа).

• Форма конструкции может иметь разные формы:

— в виде закрученных по спирали тонких трубочек (змеевик);

— пластинчатые модули с проходящей по ним жидкостью;

— труба, вмонтированная в трубу.

Как самостоятельно изготовить теплообменник

Смастерить элемент отопительного оборудования можно своими руками. Для этого потребуется минимум материала:

— бак из стали (толщина стенок 2,5-3 мм);

— 2 медные трубы;

— 2 т-образных тройника.

1. Установка бака выполняется на расстоянии от печи не менее 2,5-3 метров. От пола резервуар нужно приподнять на 1 метр.

2. Сделать в баке 2 отверстия: сверху для вывода горячей воды, внизу для подачи холодной жидкости.

3. Придать трубе форму спирали, чтобы получился змеевик.

Читайте также:  Как работает тёплый пол? Преимущества и недостатки системы

4. Установить трубу в бак, выводя концы через проделанные отверстия.

5. Закрепить к концам фитинги с резьбой.

6. Отверстия с выходной трубой сделать герметичными.

7. Установить на трубу регулятор мощности. Можно обойтись и без него, но данное устройство позволит экономно расходовать энергию.

8. Закрепить к терморегулятору клеммы и провода для питания током.

9. Для предотвращения расширения бака во время нагрева следует установить анод.

10. Проверить герметичность всех соединений.

11. Заполнить бак водой.

Теплообменник, сделанный своими руками, готов.

        Поделиться:

nastroike.com

www.teplo-ltd.ru

Змеевиковые теплообменники

Основным теплообменным эле­ментом является змеевик-труба, согнутая по определенному про­филю.

Конструкция змеевикового теплообменника показана на рис. 4. Аппарат имеет корпус 1, в котором размещен змеевик 3 или система змеевиков. Витки змеевика ориентированы по винтовой линии. При боль­шой площади поверхности теплообмена змеевики по длине набирают из нескольких секций. Во избежание прогибов труб при большом числе витков и большом диаметре навивки каждый виток закрепляют болтами на стойках.

Рис. 4 Змеевиковый теплообменник:

1- корпус

2- стакан

3- змеевик из трубы

Пар вводится в верхнюю часть корпуса через вход п1 со скоростью до 50 м/с, выходит снизу через выход п2. Охлаждающая жидкость пос­тупает в змеевик снизу через вход B1 и движется в нем со скоростью до [1]м/с, выходит через выход В2. Разность давлений теплоносителей в змееви-

ковых аппаратах может достигать 10 МПа.

Скорость движения жидкости мала вследствие большого сечения корпуса аппарата, что обусловливает низкие значения коэффициентов теплоотдачи от наружной стенки змеевика к жидкости (или наоборот). Для увеличе­ния этого коэффициента теплоотдачи повышают скорость движения жидкости путем установки в корпусе аппарата, внутри змеевика, стакана. В этом случае жидкость движется по кольцевому пространству между стенками аппарата и стакана с повышенной скоростью.

По­гружные змеевиковые теплообменники имеют сравнительно не­большую поверхность теплообмена (до 10-15 м2). Спиральные теплообменники

Спиральные теплообменники изготовляют с поверхностью теплообмена 10—100 м2; они работают как под вакуумом, так и при давлении до 1 МПа при температуре рабочей среды 20—200 °С. Их можно использовать для реализации теплообмена между рабочими средами жидкость—жидкость, газ—газ, газ—жидкость.

Все большее распространение этих теплообменников в последнее время объясняется главным образом простотой изготовления и компактностью конструкции. В таком аппарате один из теплоносителей поступает в периферийный канал аппарата 3 и, двигаясь по спирали, выходит из верхнего центрального канала 1. Другой теплоноситель поступает в нижний центральный канал 4 и выходит из периферийного канала 2.

Площадь поперечного сечения каналов в таком теплообменнике по всей длине постоянна, поэтому он может работать с загрязненными жидкостями (загрязнение смывается потоком теплоносителя). Рис.5 Спиральный теплообменник В спиральных теплообменниках поверхность теплообмена образована двумя стальными лентами 1, 2 толщиной 3,5—6 мм и шириной 400—1250 мм (рис. 5), свернутыми в спираль так, что получаются каналы прямоугольного профиля, по которым противоточно движутся теплоносители. Достоинствами спиральных теплообменников являются повышенная ком­пактность (большая поверхность теплообмена в единице объема) при одинаковых коэффициентах теплопередачи и меньшее гидравлическое сопротивление для прохода теплоносителей, недостатками их являются сложность изготовления и меньшая плотность.

Оросительные теплообменники

Рис.5 Оросительный теплообменник

Оросительные теплообменники применяют в основном для охла­ждения жидкостей и газов или конденсации паров.

Оросительный теплообменник представляет собой змеевик (рис. 6) из разме­щенных друг над другом прямых труб 1, соединенных между собой калачами 2. Снаружи трубы орошают водой, которую подают в желоб 3 для равномерною распределения охлаждающей воды по всей длине верхней трубы змеевика. Отрабо­танная вода поступает в корыто 4 для сбора воды. По трубам протекает охлаждае­мый теплоноситель.

Орошающая теплообменник вода при перетекании по наружным стенкам труб частично испаряется. Но при этом происходит необратимая потеря воды. Во избежание сильного увлажнения воздуха в помещении ороситель­ные теплообменники обычно устанавливают на открытом воздухе. По этой же причине, если оросительный теплообменник необходи­мо установить в помещении, его приходится помещать в громозд­кие кожухи.

К недостаткам этих теплообменников следует отнести также гро­моздкость, неравномерность смачивания наружной поверхности труб, нижние ряды которых могут вообще не смачиваться и прак­тически не участвовать в теплообмене. Поэтому, несмотря на простоту изготовления, легкость чистки наружных стенок труб и другие достоинства, оросительные теплообменники находят огра­ниченное применение. Теплообменники «труба в трубе»

Теплообменники типа «труба в трубе» представляют собой набор последова­тельно соединенных элементов, состоящих из двух концентрически расположенных труб (рис. 6).

Один теплоноситель движется по внутренним трубам 1, другой - по кольцевому зазору между внутренними и наружными 2 трубами. Внутренние трубы соединяются с помощью калачей 3, а наружные с помощью соединительных патрубков 4. Длина элемента теплообменника типа «труба в трубе» обычно состав­ляет 3-6 м, диаметр наружной трубы -76-159 мм, внутренней - 57-108 мм.

Рис. 6 Теплообменники типа «труба в трубе» Поскольку сечения внутренней трубы и кольцевого зазора неве­лики, то в этих теплообменниках достигаются значительные скоро­сти движения теплоносителей (до 3 м/с), что приводит к увеличению коэффициентов теплопередачи и тепловых нагрузок, замедлению отложения накипи и загрязнений на стенках труб. Однако двухтруб­ные теплообменники более громоздки, чем кожухотрубчатые, на их изготовление требуется больше металла на единицу поверхности теплообмена. Двухтрубные теплообменники применяют для про­цессов со сравнительно небольшими тепловыми нагрузками и соот­ветственно малыми поверхностями теплообмена (не более десятков квадратных метров).

Теплообменники типа «труба в трубе» используют для охлаждения или нагревания в системе жидкость—жидкость, когда расходы теплоносителей невелики и последние не меняют своего агрегатного состояния. Испарители и паропреобразователи

Испарители применяются для испарения жидкости или для увеличения концентрации раствора путем испа­рения части растворителя.

Испарители и парооб­разователи широко применя­ются для уменьшения и восполне­ния потерь конденсата. Их можно разделить на аппараты с естественной циркуляцией воды между труб­ками и с принудительной циркуляцией воды в кипятильных трубках.

Давление с испарителя выбирается таким образом, чтобы обеспечивать нужную температуру кипения. По­скольку испарители часто работают под вакуумом, то температура в них ниже нормальной температуры кипения.

В испарителях, в которых жидкость движется снизу вверх по вертикальным трубам, температура кипения жидкости внизу выше, чем вверху, из-за большего гидроста­тического давления. Таким образом, в нижней части труб кипение отсутствует и температура увеличивается до до­стижения температуры кипения, соответствующей локаль­ному давлению. Затем возникает кипение вследствие боль­шого подвода теплоты и мгновенного парообразования в перегретой жидкости, и температура уменьшается. Следова­тельно, разность температур в середине труб меньше, чем на концах, что может привести к значительному снижению характеристик в вертикальных испарителях (как с корот­кими, так и с длинными трубами), а также испарителях типа «корзины». Для повышения концентрации растворов необходимо учитывать рост температуры кипения при уве­личении концентрации.

В качестве примера испарителя воды с естественной циркуляцией на рис.7 представлен вертикальный аппарат. Коэффициент теплопередачи 3000-4000 Вт/м2∙К. Естественная циркуляция в этом аппарате происходит вследствие того, что образую­щаяся в кипятильных трубках пароводяная эмульсия имеет меньшую плотность, чем вода в кольцевом зазоре между корпусом и трубной системой, где ей сообщается значительно меньшее удельное количество тепла на единицу объема. Рис.7 Вертикальный испаритель:

1- парообразующее пространство;

2- патрубок для подачи греющего пара;

3-патрубок для подачи выпариваемой жидкости;

4- нижняя крышка;

5- отвод конденсата пара;

6- трубка для сдувок;

7- греющая камера;

8- трубка для сдувок неконденсируемого газа;

9- дренаж сепаратора;

10- сепаратор;

11- патрубок для отвода сухого пара.

При этом в трубках устанавливается подъем­ное движение пароводяной эмульсии, а в кольцевом зазоре — опускное движение воды. Паровые пузырьки по выходе среды из трубок перехо­дят в паровой объем. Уровень воды в аппарате поддерживается с по­мощью поплавкового регулятора питания выше верхней трубной решет­ки. Первичный (греющий) пар поступает в межтрубное пространство греющей камеры. Для отделения влаги из вторичного пара в верхней части парового пространства встроено сепа­рирующее устройство.

Паропреобразователь - теплообменный аппарат для испарения воды; разновидность испарителя, отличающаяся тем, что конечным продуктом рабочего процесса является не дистиллят (питательная вода), а пар водяной. Библиографический список

1. Лебедев П.Д. Тепломассообменные сушильные и холодильные установки. М.: Энергия, 1972 – 320с.

2. Виноградов С.Н. Выбор и расчёт теплообменников. Пермь: ПГУ, 2001 – 100с.

3. Касаткин А.Г. Основные процессы и аппараты технической технологии. М.: Химия, 1970 – 374с.

4. Дытнерский Ю.И. Процессы и аппараты технической технологии. Ч.1 М.: Химия, 1995 – 400с.

5. Мартыненко О.Г. Справочник по теплообменникам. Т.2. М.: Энергоатомиздат, 1987 - 352с.

Не нашли то, что искали? Воспользуйтесь поиском:

Page 2

Кожухотрубчатые теплообменные аппараты обозначаются индексами и классифицируются:

• по назначению (первая буква индекса): Т – теплообменники; Х – холодильники; К – конденсаторы; И – испарители;

• по конструкции (вторая буква индекса) – Н — с неподвижными трубными решетками; К — с температурным компенсатором на кожухе; П — с плавающей головкой; У — с U-образными трубами; ПК — с плавающей головкой и компенсатором на ней;

• по расположению (третья буква индекса): Г – горизонтальные; В – вертикальные.

Кожухотрубчатые теплообменники (рис. 1-2) представляют собой аппараты, выполненные из пучков труб, собранных при помощи труб­ных решеток, и ограниченные кожухами и крышками со штуцерами.

Трубы, кожух и другие элементы конструкции могут быть изготовлены из углеродистой или нержавеющей стали.

Трубное и межтрубное пространства в аппарате разобщены, а каждое из этих пространств может быть разделено при помощи перегородок на несколько ходов. Перегородки устанавливаются с целью увеличения скорости, а следовательно, и интенсивности теплообмена теплоносите­лей. Теплообменники этого типа предназначаются для теплообмена между различными жидкостями, между паром и жидкостями или между жидкостями и газами. Они применяются тогда, когда требуется большая поверхность теплообмена.

Трубки теплообменников изготовляются прямыми (за исключением теплообменников с U-образными трубками); поэтому они легко доступны для очистки и замены в случае течи.

В большинстве случаев пар (греющий теплоноситель) вводится в межтрубное пространство, а нагреваемая жидкость протекает по труб­кам. Конденсат из межтрубного пространства выходит к конденсатоотводчику через штуцер, расположенный в нижней части кожуха. Для компенсации температурных удлинений, возникающих между кожухом и трубками, предусматривается возможность свободного удлинения труб за счет различного рода компенсаторов.

Особенность кожухотрубчатых теплообменников состоит в том, что проходное сечение межтрубного пространства велико по сравнению с проходным сечением трубок и может быть больше последнего в 2,5— 3 раза.

Кожухотрубчатые аппараты могут быть вертикальными и горизон­тальными. Вертикальные аппараты имеют большее распространение, так как они занимают меньше места и более удобно располагаются в рабочем помещении. Для удобства монтажа и эксплуатации макси­мальную длину трубок для них следует брать не больше 5 м.

Во избежание резкого снижения теплоотдачи от конденсирующегося пара к стенке в корпусе теплообменника должны быть предусмотрены краны для выпуска воздуха как из нижней части аппарата над поверх­ностью конденсата, так и из верхней его части.

В кожухотрубных ТА трубы могут быть располо­жены по сторонам шестиугольников или, что одно и то же, равносторон­них треугольников (треугольной) или по концентрическим окружностям.

Вопрос о том, какой из тепло­носителей направлять в трубы или в межтрубное пространство, должен решаться с точки зрения не только интенсификации теплообмена, но и на­дежности работы ТА. Если теплоноситель вызывает коррозию или меха­ническое повреждение труб, то лучше его пропустить внутрь труб, так как экономичнее выполнить трубы из материала высокой стоимости, чем кожух. В трубы целесообразно направлять теплоноситель под большим давлением, чем в межтрубном пространстве, чтобы не делать толстостен­ный кожух, а также более загрязненный, поскольку трубы очистить лег­че, чем межтрубное пространство. Например, дымовые газы обычно про­ходят в трубах, что уменьшает засорение аппарата золой и сажей, а пар и воздух — в межтрубном пространстве.

Двухходовой горизонтальный теплообменник типа Н (рис. 1) состоит из цилиндрического сварного кожуха 8, распределительной камеры 11 и двух крышек 4. Трубный пучок образован трубами 7, закрепленными в двух трубных решетках 3. Трубные решетки приварены к кожуху. Крышки, распределительная камера и кожух соединены фланцами. В кожухе и распределительной камере выполнены штуцера для ввода и вывода теплоносителей из трубного (штуцера 1, 12) и межтрубного (штуцера 2, 10)

пространств. Перегородка 13 в распределительной камере образует ходы теплоносителя по трубам. Для герметизации узла соединения продольной перегородки с трубной решеткой использована прокладка 14, уложенная в паз решетки 3.

1 2

Рис.1

1 - Двухходовой горизонтальный теплообменник с неподвижными решетками;

2 - Теплообменник с U-образными трубами.

Поскольку интенсивность теплоотдачи при поперечном обтекании труб теплоносителем выше, чем при продольном, в межтрубном пространстве теплообменника установлены зафиксированные стяжками 5 поперечные перегородки 6, обеспечивающие зигзагообразное по длине аппарата движение теплоносителя в межтрубном пространстве. На входе теплообменной среды в межтрубное пространство предусмотрен отбойник 9 — круглая или прямоугольная пластина, предохраняющая трубы от местного эрозионного изнашивания.

1 2

Рис.2

1 - Теплообменник типа К — с линзовым компенсатором;

2 – Теплообменник с плавающей головкой.

Теплообменник типа К—с линзовым компенсатором(Рис. 2) на корпусе. В этом аппарате температурные деформации компенсируются осевым сжатием или расширением компенсатора. Теплообменники с линзовыми компенсаторами применяют при небольших температурных деформациях (не более 13-15 мм) и невысоких давлениях в межтрубном пространстве (не более 0.5 МПа).

Применение кожухотрубчатых теплообменников с температурным компенсатором на кожухе (линзовый компенсатор) ограничено предельно допустимым давлением в кожухе, равным 1,6 МПа. При большем давлении в кожухе (1.6—8,0 МПа) следует применять теплообменники с плавающей головкой или с U-образными трубами.

На рис.3 изображен кожухотрубчатый теплообменник с плавающей головкой, предназначенной для охлаждения (нагревания) жидких или газообразных сред без изменения агрегатного состояния. Не закрепленная на

кожухе вторая трубная решетка вместе с внутренней крышкой, отделяющей трубное пространство от межтрубного, образует так называемую плавающую головку. Такая конструкция исключает температурные напряжения в кожухе и в трубах. Эти теплообменники, нормализованные в соответствии с ГОСТ 14246—79, могут быть двух- или четырехходовыми, горизонтальными длиной 3, 6 и 9 м или вертикальными высотой 3 м. Допустимое давление охлаждающей среды в трубах до 1,0 МПа, в межтрубном пространстве — от 1,0 до 2,5 МПа. Диаметр кожуха от 600 до 1400 мм, высота труб 6,0 м.

В аппаратах типа У обеспечивается свободное температурное удлинение труб: каждая труба может расширяться независимо от кожуха и соседних труб. Разность температур стенок труб по ходам в этих аппаратах не должна превышать 100 °С. В противном случае могут возникнуть опасные температурные напряжения в трубной решетке вследствие температурного скачка на линии стыка двух ее частей.

Теплообменники с U-образными трубами применяют для нагрева и охлаждения жидких или газообразных сред без изменения их агрегатного состояния. Они рассчитаны на давление до 6,4 МПа.

Преимущество конструкции аппарата типа У — возможность периодического извлечения трубного пучка для очистки наружной поверхности труб или полной замены пучка. Однако следует отметить, что наружная поверхность труб в этих аппаратах неудобна для механической очистки.

Поскольку механическая очистка внутренней поверхности труб в аппаратах типа У практически невозможна, в трубное пространство таких аппаратов следует направлять среду, не образующую отложений, которые требуют механической очистки.

Для уменьшения засорения золой дымовые газы пропускают внутри трубок, а воздух — через межтрубное пространство.

При значительно больших давлениях в теплообменной аппаратуре применяют сальниковые компенсаторы. Однако сальниковые компенсаторы могут пропускать рабочую среду, что требует их периодическое регулирование, в связи с чем сальниковые компенсаторы применяют для аппаратов с малыми диаметрами. Пластинчатые теплообменники

Пластинчатый теплообменник — это теплообменник поверхностного типа, в котором передача тепла от одной среды (греющего теплоносителя) к другой (нагреваемому теплоносителю) происходит через металлическую стенку, которую принято называть поверхностью теплообмена.

Пластинчатые теплообменники представляют собой аппараты, теплообменная поверхность которых образована набором тонких штампованных пластин с гофрированной поверхностью. Рабочие среды в теплообменнике движутся в щелевых каналах сложной формы между соседними пластинами в противопотоке. Каналы для греющего и нагреваемого теплоносителей чередуются между собой (Рис.3). Гофрированная поверхность пластин усиливает турбулизацию потоков рабочих сред и повышает коэффициент теплоотдачи.

Их разделяют по степени доступности поверхности теплообмена для механической очистки и осмотра на разборные, полуразборные и неразборные (сварные).

Наиболее широко применяют разборные пластинчатые теплообменники, в которых пластины отделены одна от другой прокладками. Монтаж и демонтаж этих аппаратов осуществляют достаточно быстро, очистка теплообменных поверхностей требует незначительных затрат труда.

Основные размеры и параметры наиболее распространенных в промышленности пластинчатых теплообменников определены ГОСТ 15518—83. Их изготовляют с поверхностью теплообмена от 2 до 600 м2 в зависимости от типоразмера пластин; эти теплообменники используют при давлении до 1,6 МПа и температуре рабочих сред от —30 до +180° С для реализации теплообмена между жидкостями и парами (газами) в качестве холодильников, подогревателей и конденсаторов.

Серийно выпускаемые разборные пластинчатые теплообменники могут работать с загрязненными рабочими средами при размере твердых включений не более 4 мм.

Рис.3 Разборный пластинчатый теплообменник

Устройство и принцип работы пластинчатого теплообменника достаточно просты. При стягивании пакета пластин образуется ряд каналов, по которым протекают жидкости учавтвующие в процессе теплообмена. Все пластины в пакете одинаковы, только развернуты одна относительно другой на 180 градусов. Такая установка пластин обеспечивает чередование горячих и холодных каналов. В процессе теплообмена жидкости движутся навстречу друг другу (в противотоке), и горячая жидкость передает тепло через стенку пластины. В местах их возможного перетекания находится или стальная пластина или двойное резиновое уплотнение, что практически исключает смешение жидкостей. Такой принцип построения пластинчатого теплообменника позволяет его быстро модифицировать, как в сторону увеличения количества пластин и тем самым увеличить мощность пластинчатого теплообменника, так и легко отремонтировать его в случае выхода из строя резинового уплотнения или теплообменной пластины.

Серийно выпускаемые пластинчатые теплообменники комплектуют пластинами, штампованными из листового металла толщиной 1 мм. Гофры пластин обычно имеют в сечении профиль равностороннего треугольника высотой 4—7 мм и основанием длиной 14—30 мм (для вязких жидкостей до 75 мм). Материал пластин — оцинкованная или коррозионно-стойкая сталь, титан, алюминий. К недостаткам пластинчатых теплообменников следует отнести невозможность использования их при давлении более 1,6 МПа.

Пластины неразборных теплообменников сварены в блоки, соединенные на прокладках в общий пакет

Не нашли то, что искали? Воспользуйтесь поиском:

studopedia.ru

Змеевики в печь своими руками. Приступаем к монтажу. Для изготовления водяного теплообменика приготовьте

Сделать змеевик своими руками можно из круглых или профильных труб. Для разных эксплуатационных условий подбирается тот или иной материал. Такие изделия используются для передачи тепла в водяных системах отопления. Они даже могут встраиваться в камины или печи, что позволяет использовать их в качестве котельной для обогрева всех комнат дома.

Виды змеевиковых теплообменников

Полотенцесушитель — это тоже змеевиковый теплообменник.

Вы можете изготовить змеевик своими руками разной конструкции и из нескольких видов металла (сталь, медь, алюминий, чугун). Алюминиевые и чугунные изделия штампуются на заводах, так как требуемых условий для работы с этими металлами можно добиться только в производственных условиях. Без этого получится работать только со сталью или медью. Лучше всего использовать медь, так как она податлива и имеет высокую степень теплопроводности. Есть две схемы как сделать змеевик:

Винтовая схема подразумевается расположение витков спирали по винтовой линии. Теплоноситель в таких теплообменниках движется в одном направлении. При необходимости для увеличения тепловой мощности можно объединять несколько спиралей по принципу «труба в трубе».

Чтобы максимально сократить теплопотери нужно выбрать . Это также зависит от материала стен.

Делать в нужно исходя из паропроницаемости теплоизоляции.

В параллельной схеме теплоноситель постоянно меняет направление своего движения. Такой теплообменник изготавливается из прямых труб, соединенных коленом с поворотом на 180 градусов. В некоторых случаях, например, для изготовления регистра отопления, поворотные колени могут не использоваться. Вместо них устанавливается прямой байпас, который может находиться как на одном, так и на обоих торцах трубы.

Методы передачи тепла

Принцип работы змеевикового теплообменника заключается в том, чтобы нагревать одно вещество за счет тепла другого. Так, вода в теплообменнике может нагреваться открытым пламенем. В данном случае он будет выступать в роли теплоприемника. Но также змеевик и сам может выступать в качестве источника тепла. Например, когда по трубкам течет теплоноситель, нагретый в котле или посредством встроенного электрического ТЭНа, а его тепло передается воде из системы отопления. По сути, конечная цель теплопередачи – это нагреть воздух в помещении.

Где устанавливаются змеевиковые теплообменники

Метод теплообмена зависит от того, где устанавливается змеевик:

В котле стоят змеевики с оребрением.

В котле пламя нагревает воду в змеевике, а потом она расходится по всей системе, отдавая тепловую энергию в помещение конвективным методом через . Некоторые из них также относятся к категории змеевиковых теплообменников. Например, полотенцесушители и из круглой или профильной трубы.

Контакт с открытым пламенем накладывает некоторые требования к эксплуатационным качествам металла, который использовался в производстве. Акцент делается на надежности и долговечности. Поэтому чаще всего используют сталь и чугун. Последний считается самым лучшим вариантом.

В бойлере и теплоаккумуляторе приоритетное значение имеет скорость теплообмена и устойчивость к коррозии. В данном случае нет ничего лучше, чем медь. Главное, чтобы она не контактировала с алюминием. Между этими металлами происходит реакция, которая приводит к химической коррозии.

Как рассчитать теплообменник

Делать расчет змеевикового теплообменника нужно обязательно, иначе его тепловой мощности может не хватить на обогрев помещения. Система отопления предназначена для компенсации теплопотерь. Соответственно узнать точное количество требуемой тепловой энергии мы можем только исходя из теплопотерь здания. Сделать расчет достаточно сложно, поэтому в среднем берут 100 Вт на 1 м. кв при высоте потолков 2,7 м.

Между витками должен быть зазор.

Также для расчета потребуются следующие значения:

  • число Пи;
  • диаметр трубы, которая есть в наличии (возьмем 10 мм);
  • лямбда теплопроводности металла (для меди 401 Вт/м*К);
  • дельта температуры подачи и обратки теплоносителя (20 градусов).

Для определения длины трубы нужно общую тепловую мощность в Вт поделить на произведение вышеперечисленных множителей. Рассмотрим на примере медного теплообменника с требуемой тепловой мощностью в 3 кВт – это 3000 Вт.

3000/ 3,14 (Пи)*401 (лямбда теплопроводности)*20 (дельта температур)*0,01 (диаметр трубы в метрах)

Из данного расчета получается, что вам потребуется 11,91 м медной трубы диаметром 10 мм, чтобы тепловая мощность змеевика составляла 3 кВт.

Как сделать винтовой змеевик

После того как вы сделали расчет змеевика теплообменника можно приступать непосредственно к изготовлению. Винтовую конструкцию сделать достаточно просто. Диаметр петли нужно подбирать исходя из размера бака, в который будет осуществляться монтаж. Нужно чтобы трубы не прикасались к корпусу.

Накручивать витки нужно на круглую болванку. Медь легко гнется, поэтому не нужен никакой дополнительный инструмент. Желательно соблюдать небольшой отступ между витками, чтобы теплоноситель контактировал с трубой со всех сторон. Это увеличит площадь теплообмена, что позволит достигнуть максимальной тепловой мощности, которую мы рассчитывали.

Как сделать теплообменник из прямых труб

Чтобы изготовить змеевик по параллельной схеме нужно обладать навыками сварки металлов. Для таких работ используют стальные трубы, согнуть которые весьма проблематично, хотя имея хороший трубогиб, все же возможно. Но в большинстве случаев приходятся прибегать к сварке.

Стальной змеевик из круглых труб.

Алгоритм работы:

  • нарежьте ровные отрезки из стальных труб;
  • уложите их параллельно на ровной поверхности;
  • соедините их коленами с поворотом на 180 градусов – если таких колен нет, то можно сварить два уголка по 90 градусов;
  • в нижний и верхний торцы вварите заглушки с патрубком для подключения к системе отопления.

Кроме этого, в нижней части можно установить заглушку, по центру которой вырезается отверстие. Затем в это отверстие приваривается гайка. Ее внутренний диаметр должен подходить под стандартный электрический ТЭН. В таком случае можно будет использовать самодельный теплообменник как электрический обогреватель.

Существует широкий ассортимент генераторов тепла, которые отличаются конструкцией и видами топлива. Если здание расположено вдали от крупных населенных пунктов или используется периодически, лучшим вариантом станет установка системы печного отопления.

Теплообменник для печи, применяемый в данной конструкции, обеспечит равномерный обогрев всего дома, а также предоставит необходимое количество горячей воды.

Специфика применения

Стандартное печное отопление подразумевает неравномерное распределение тепловой энергии – чем дальше от источника, тем холоднее. После подключения радиаторов и заливки воды, печи выступают аналогами твердотопливных котлов, обеспечивая нагрев теплоносителя, дымовых каналов и стенок. Подобная система во время топки позволит передать тепло от змеевика к радиаторам, а после угасания топлива будет использовать энергию нагретых стенок печи.

При монтаже теплообменника стоит учитывать то, что его установка уменьшит полезный объем топливного отсека и горючее придется добавлять намного чаще. Ликвидировать данную проблему поможет правильная проектировка водяного контура и его соотношение с размерами отопительной камеры. Хорошей альтернативой станет устройство .

В подобном апгрейде системы отопления есть свои нюансы. Та энергия, что выделяется при сгорании дров, станет нагревать теплообменный узел и размещенную в нем рабочую жидкость, но стенки печи при этом не изменят своей температуры.

Нагреву подвергнется верхняя часть корпуса с дымовыми каналами. Если здание применяется для временного проживания, включение печи будет проводиться нерегулярно, и может привести к замерзанию жидкости внутри труб. С целью предотвращения аварийных ситуаций рекомендуется заменять воду антифризом.

Преимущества

Установка водяного контура в систему печного отопления позволяет повысить эффективность расходования топлива.

Энергия сгоревшего теплоносителя тратится на нагрев корпуса, дымовых каналов и стенок, а также обеспечивает высокую температуру циркулирующей по трубам воды.

Для владельцев недвижимости данный метод обеспечивает дополнительные преимущества:

  • простота изготовления ( часто монтируются в жилых домах, и для качественного распределения энергии достаточно изготовить самодельный теплообменник, подключив его к отопительной системе здания);
  • комбинированный обогрев за счет теплого воздуха из печи и горячей воды из батарей;
  • разнообразие видов горючего (большинство котлов для отопления использует только один вид энергоносителя, который может быть дорогим и малоэффективным, а теплообменник кирпичной печи работает за счет любого твердого топлива);
  • приятный внешний вид (проектирование загородного дома нередко происходит в национальном стиле, но монтаж теплообменных узлов не нарушает традиционного вида русской печи).

Конструкционные особенности

Если собственник здания имеет опыт кладки кирпича или печных работ, монтаж может быть произведен своими руками. Перед подключением водяной отопительной системы также понадобится изготовить теплообменный узел.

Несмотря на то, что строительный рынок предлагает большой выбор готовых конструкций, самостоятельное изготовление более выгодно. Собственноручная установка позволяет учесть все параметры данной конкретной печи, ее размещение и габариты топливного отсека.

Теплообменник из труб

Устройство системы печного отопления с водяным контуром подразумевает монтаж теплообменника в топливном отсеке печи и подключение к нему труб для подачи рабочей жидкости. Для отопительно-варочных печей и кухонных плит хорошо подойдут змеевики, сваренные из труб и размещенные в металлических емкостях. Их изготовление требует профессионализма, а очистка от продуктов горения достаточно трудоемка, но извилистая поверхность обеспечит быстрый нагрев.

Применяемые в конструкции 50-милиметровые трубы П-образной формы можно заменить отрезками профильных труб 40х60 мм. Это упростит работы по сварке и серьезно облегчит монтаж. Если печь не применяется для приготовления пищи, к верхней части теплообменного узла привариваются дополнительные трубки малого диаметра. Конструкция, улучшенная своими руками, будет отдавать намного больше тепла.

Устройства такого типа применяются в печах, предназначенных исключительно для обогрева помещения. Для их изготовления понадобится листовой металл толщиной в полсантиметра, отрезки прямоугольных труб 40х60 мм, а также круглые трубки того же диаметра для подвода воды к рабочей поверхности. Габариты теплообменников зависят от размеров печных отсеков для топлива.

Подобная система отопления может быть применена для отопительно-варочной печи или простой кухонной плиты. Для этого конструкцию необходимо смонтировать так, чтобы нагретые газы из топливной камеры двигались в направлении верхней полки регистра, обтекали ее и входили в дымовые каналы.

Альтернативным вариантом станет изготовление теплообменника без верхней полки, боковые стороны которого будут соединяться с круглыми или прямоугольными трубами.

Монтаж обогревательного устройства

Теплообменники для кирпичных печей могут быть сделаны своими руками из металла толщиной 2,5 мм. Основой конструкции станут две емкости – цилиндрическая верхняя и прямоугольная нижняя, связанные между собой с помощью труб. Сопряжение швов должно происходить с минимальным зазором, а диаметр труб – вычисляться, исходя из габаритов печи и площади обогреваемого помещения. После проверки точности расчетов и повторного измерения заготовок детали соединяются методом сварки.

Прочность готовой конструкции определяется после заваривания нижней трубы, заливки воды и соединения выходных отверстий с радиаторными емкостями. Когда монтаж завершен, необходимо заполнить систему сжатым воздухом, контролируя давление с помощью манометра. Качественно заваренные швы протекать не будут. В случае обнаружения протечек или других дефектов, проводится слив воды и герметизация проблемных мест. Важным параметром при монтаже станет общая длина труб – чем она меньше, тем лучше пройдет обогрев помещения.

Нюансы установки и эксплуатации

При монтаже тепловых узлов и их введении в эксплуатацию нужно следовать технологии установки и не допускать аварийных ситуаций. Высокая температура в отопительной камере предъявляет повышенные требования к качеству металла, рациональности теплообменного узла и качеству сварки. Знание нескольких простых правил поможет обеспечить длительное и надежное функционирование системы печного обогрева.

Несущие контуры теплообменников не должны крепиться к стенам с помощью неподвижных соединений. Температура, до которой нагреваются трубы, вызывает расширение металла, которое может привести к изменению их размеров.

Хорошим материалом для труб печного отопления станет медь. Применение данного металла обеспечит высокую теплопроводность конструкции и простоту изготовления змеевика за счет пластичности.

Сечение трубопроводов должно составлять не менее дюйма. При меньших величинах схема станет инерционной, а ток жидкости в ней серьезно замедлится. Рост теплопотерь в отопительных магистралях приведет к снижению коэффициента полезного действия – в помещении станет холоднее при таких же тратах топлива.

Главным элементом любой из систем отопления служит особое устройство - , в котором происходит передача тепла от генератора тепла к теплоносителю. На современном рынке представлено большое количество различных отопительных котлов, но все их разнообразие не ограничивает фантазию домашних умельцев по части самостоятельного изготовления подобных устройств. В нашей статье читателям будет предложено узнать, для чего нужен теплообменник в системе отопления, как его сделать своими руками и каким способом подключить.

Функция теплообменника в системе отопления

В домашних отопительных системах воздух наиболее часто используются поверхностные теплообменники системы отопления, где тепловая энергия передается через поверхности металлических стенок данного устройства.

Принцип отопления через теплообменник наиболее полно реализован в конструкции газовых, твердотопливных или электрических котлов. Вода циркулирует по изогнутым в виде змеевика трубам, установленным внутри отопительного агрегата, и нагревается от температуры горящего топлива. Нагревшийся теплоноситель уходит в трубопровод отопительной системы, а ему на смену в теплообменник поступает остывшая вода из радиаторов.

До сих пор во многих индивидуальных домах традиционным источником тепла остается печь. Она хороша для обогрева небольшой избы, однако в условиях многокомнатного коттеджа ее тепловая мощность недостаточна. Поэтому в частном доме теплообменник в системе отопления нужен для того, чтобы превратить печку в полноценный водонагревательный котел. Размер и форма самодельного теплообменника для отопления должна вписываться в габариты топливной камеры печи. К этому устройству можно подключить трубопроводы и радиаторы, и тогда отопление дома станет более эффективным.

Виды теплообменников

Более практичны водяные теплообменники для отопления. Это обусловлено тем, что вода намного лучше передает тепловую энергию, чем воздух. Вместе с тем, воздушный теплообменник для отопления также находит применение. Кроме водяного и воздушного, применяется также и теплообменник на дымоход для отопления, который устанавливают не внутрь, а снаружи.

Все выпускаемые промышленностью отопительные устройства оснащены теплообменниками, конструкция которых максимально приспособлена для эффективного нагрева воды.

В заводских условиях теплообменные устройства изготавливают из меди. Труба представляет собой змеевик, поперек изгибов которого расположено множество пластин, обеспечивающих большую площадь теплообмена.

Соорудить у себя дома самодельный теплообменник для отопления, чтобы он был точно как заводской, практически нереально. Поэтому придется выбрать вариант попроще.

Устройство системы

Принцип действия самодельного теплообменника состоит в том, что печь передает ему энергию от сгорания дров или угля, а нагревшаяся вода расходится по трубам во все комнаты. Такой способ отопления позволяет обитателям дома наслаждаться равномерным распределением тепла. Кроме того, все помещения прогреваются гораздо быстрее, а расходы на приобретение топлива снижаются.

Усовершенствовать печное отопление частного дома можно двумя способами:

  • построить печь «с нуля» под конкретный размер теплообменника;
  • установить в существующую печь самодельный теплообменник, изготовленный по размерам топки.

Изготовив теплообменник для отопления своими руками, домовладелец может быть уверенным, что его печь с водяным контуром станет действовать не хуже настоящего твердотопливного котла. Отличие будет только в том, что у печки расположение входного отверстия теплообменника получится немного выше над полом, чем у заводских котлов. Это довольно существенная разница, которая может влиять на скорость естественной циркуляции теплоносителя.

Подключение теплообменника к системе отопления нужно сделать таким образом, чтобы труба поступления холодной воды (обратка) была расположена как можно ниже.

Так же, как в обычной системе отопления, в верхней точке трубопроводов нужно вмонтировать расширительный бачок. Он будет компенсировать изменение объема нагретой воды и выпускать из системы пузырьки воздуха. Если отопление через теплообменник с естественной циркуляцией окажется недостаточным для обогрева большого коттеджа, придется установить в систему циркуляционный насос.

Для присоединения самодельного теплообменника для отопления используют 2 штуцера: один снизу (вход холодной воды), другой сверху (выход горячей). При монтаже теплообменника нужно обеспечить необходимый уклон труб, как требуется по схеме.

Преимущества отопления с теплообменником

Если разбираться, для чего нужен теплообменник в системе отопления, можно заметить несколько явных преимуществ:

  1. Простота изготовления. Если в доме уже существует печь, то придется потратиться только на изготовление самодельного теплообменника и монтаж системы отопления.
  2. . Дополнительно к обогреву дома от поверхности печки прибавится водяная система отопления.
  3. Разнообразие видов топлива. Можно топить печь любыми твердыми энергоносителями, в отличие от котлов, ориентированных только на определенный вид топлива.
  4. Красивый внешний вид. Сохранить традиционный вид русской печи бывает полезно при создании интерьера в национальном стиле.

Среди недостатков отопления через теплообменник можно назвать: менее высокий КПД по сравнению с заводскими котлами и отсутствие автоматического контроля за интенсивностью нагрева теплоносителя.

Как изготовить самодельный теплообменник

Форма теплообменника для отопления, сделанного своими руками, может быть разной. Наиболее распространенный вариант - регистр из нескольких стальных или медных труб, но также используются и образцы пластинчатого типа.

Температура в зоне горения очень высока, особенно, когда горит уголь. Поэтому повышенные требования предъявляются к металлу, из которого будут изготовлены элементы теплообменника, рациональности его конструкции и качеству сварных швов.

Материалы для изготовления

Задача водяных теплообменников для отопления - обеспечивать оптимальную передачу тепла, и в этом процессе важна степень теплопроводности металла. Например, стальная труба проводит тепло в 7 раз слабее, чем медная. Поэтому при одинаковом диаметре трубы для передачи одного и того же количества тепла понадобится 25 метров стальной трубы взамен 3,5 метров медной.

Медные теплообменники самые экономичные в работе, но и дорогие. Более доступными для самостоятельного изготовления считаются теплообменники из стальной трубы диаметром не менее 32 мм.

Если предполагается топить печь углём, лучше установить теплообменник из чугуна. Этот металл более крепкий, и стенки устройства долго не будут прогорать.

Расчет мощности теплообменника

Вычислить заранее мощность теплообменника для системы отопления довольно трудно. Для этого нужно учитывать слишком много факторов: диаметр труб, длину змеевика, теплопроводность металла, температуру сгорания топлива, скорость циркуляции теплоносителя и др. Реальная способность теплообменника справляться со своими функциями выяснится только после начала эксплуатации отопительной системы.

При расчетах можно ориентироваться, что 1 метр трубы диаметром 50мм, служащей теплообменником, даст 1 кВт тепловой мощности.

Можно взять для примера какую-либо известную модель котла и в соответствии с его параметрами изготовить свой самодельный теплообменник.

Особенности конструкции

Теплообменник для водяного отопления дома, сваренный из гладкостенных труб, называют регистром. Он выглядит как своеобразная «решетка», и это наиболее популярная форма самодельного теплообменника. Кроме такой конструкции, делают и более простые устройства в виде прямоугольного или цилиндрического бака. Главное, чтобы площадь поверхности для теплового обмена была максимально большой.

При изготовлении теплообменника своими руками нужно соблюдать несколько условий:

  • ширина внутренних пустот в теплообменнике должна быть не меньше 5 мм, иначе вода в нем может закипеть;
  • толщина стенок труб должна быть не меньше 3 мм, чтобы металл не прогорал;
  • зазор величиной 10–15 мм между теплообменником и стенками топки должен компенсировать расширение металла при нагреве.

Особенности монтажа

Проще всего монтировать теплообменник одновременно с сооружением печи. Если устанавливать его в старую печь, придется разобрать часть ее кирпичной кладки.

Порядок действий:

  1. На подготовленный фундамент печи прямо в полость топки устанавливают трубчатый теплообменник.
  2. При дальнейшем укладывании рядов кирпичей оставляют места для входной и выходной труб устройства.
  3. После завершения кладки печи подключают теплообменник к системе отопления, заполняют систему водой и производят пробную топку печи.

Видео материал предлагает ознакомиться с полезными советами по самостоятельному изготовлению теплообменника:

До сих пор мы говорили только о теплообменниках в системе водяного отопления. Обратим внимание и на другие сферы их применения.

Воздушное отопление

Если охарактеризовать воздушную систему отопления, можно сказать, что у нее больше минусов, чем плюсов. Воздушные теплообменники для отопления мало распространены в частном жилом секторе, они пока еще не стали привычными.

Преимуществом этой системы называют возможность совмещать обогрев с принудительной вентиляцией. Однако возможные ошибки при ее проектировании и монтаже могут свести преимущества к минимуму. В воздуховодах бывает слышен шум вентилятора, а в помещениях ощущается температурный дисбаланс.

Теплообменники для воздушного отопления существуют прямого нагрева, а также косвенного. В первых из них газовое или дизельное топливо сгорает непосредственно в самом теплообменнике. В других моделях используется промежуточный теплоноситель.

Теплообменник на дымоход

На дачах и в банях у «народных умельцев» можно увидеть самодельный водяной или воздушный теплообменник, установленный на дымоход небольшой печи. Получается очень выгодно: тепло не уходит вместе с дымом, а часть его служит для нагрева воды.

Установив теплообменник на дымоход для отопления, можно получать довольно большое количество горячей воды. Конечно, этого не хватит, чтобы обогреть весь дом, но достаточно, чтобы поставить в предбаннике один-два радиатора. Использовать теплообменник на дымоход можно как для отопления, так и для быстрого нагрева воды в бане.

Подобное устройство может быть очень простым в изготовлении. За основу можно взять отрезок большой трубы диаметром 500–700 мм, или сварить бак из нержавейки. В центре конструкции будет проходить вертикальная труба, соответствующая диаметру дымохода, а сверху и снизу должны быть приварены два патрубка.

Отдавая свою температуру теплообменнику, выходящие из печи продукты сгорания быстро остывают. Из-за этого уменьшается тяга в дымоходе и несколько замедляется горение топлива.

Изготовление теплообменника для отопления своими руками может стать способом устроить в доме полноценное водяное отопление без приобретения дорогостоящего оборудования.

Печи являются традиционными конструкциями для полноценного, равномерного и качественного обогрева строений. Однако нередко устанавливаются они для таких домов, которые обладают большими размерами и несколькими комнатами, расположенными достаточно далеко друг от друга. В этом случае одна печь не сможет обеспечить равномерный обогрев каждого помещения за счет недостаточной мощности. В этой ситуации самым оптимальным решением считается змеевик, который по-другому называется теплообменником. Он подключается к обогревательному прибору, после чего проводится по всем помещениям самого строения, в результате обеспечивает их оптимальный и равномерный обогрев.

Выбор материала для предстоящей работы

Змеевик обычно создается с применение трубы, обладающей подходящей длиной и диаметром . Во время выбора следует учитывать, что все параметры данного элемента будут непосредственно сказываться на качестве отопления в доме, а также на его эффективности. Поэтому материал, из которого будет сформирован теплообменник, должен обладать хорошим показателем теплопроводности.

Наиболее популярными видами труб для этих целей являются:

  • изделия из меди, теплопроводность которых равна 380;
  • трубы из стали с теплопроводностью, равной 50 ;
  • элементы из металлопластика, теплопроводность которых приравнивается к 0,3.

Чаще всего используются медные трубы , из которых получается качественный и, обладающий всеми необходимыми элементами, змеевик. Материал является пластичным, поэтому при необходимости ему можно придать совершенно любую форму и конфигурацию, для чего используется процесс гибки. Он считается достаточно простым, поэтому реализовать все этапы легко своими руками. Также трубы из меди отличаются тем, что к ним просто подсоединяются различные фитинги.

Однако нередко для полноценного отопления в каждом помещении дома владельцы предпочитают для подсоединения к печи использовать подручные элементы, которые уже служили ранее для других целей. Для этого могут применяться старые радиаторы отопления или проточные водонагреватели, однако работать с этими предметами достаточно тяжело , кроме того, они не будут обеспечивать идеального результата обогрева.

Конструктивные элементы оборудования

Как правило, для создания полноценного отопления дома используется целостная система. Она состоит в первую очередь из , обладающего достаточно существенной емкостью. К нему подключаются специальные патрубки. Этот элемент никаким образом не контактирует с открытым огнем. С помощью печного оборудования производится обогрев воды , после чего она поступает по змеевику в отдельные комнаты строения. В этом случае может обеспечиваться равномерный и качественный обогрев всего дома. Здесь важно правильно подсоединить оборудование к печи, причем сам прибор может подключаться снаружи или внутри печи.

Разновидности подключения:

heatylab.com


Смотрите также