Вы здесь

Теплообменник для горячей воды от отопления


Разновидности и особенности теплообменников для горячей воды от отопления - Домашние работы

Использование эффективного теплообменного аппарата для горячей воды позволяет заметно расширить возможности оборудования, которое предназначено для обогрева помещений. От продуктивности его работы во многом зависит качественная и продолжительная работа ядра всей системы – обогревательного котла.

Теплообменник. Что это такое? Устройство системы

Теплообменник, используемый в целях отопления, является достаточно сложным техническим устройством. Данные аппараты передают энергию между двумя теплоносителями, один из которых – горячий, другой – холодный. Как правило, в качестве проводника тепла используется пар или жидкость, намного реже применяют газ.

Данное оборудование не имеет собственного теплового источника. Процесс функционирования системы осуществляется за счет использования энергии, которая идет от системы отопления дома или предприятия. Эффективность передачи тепловой энергии зависит от нескольких основных факторов:

  • Разница температуры между двумя средами. Чем выше разница, тем продуктивнее функционирует система;
  • Площади контакта сред и теплообменного аппарата;
  • Теплопроводности материалов, из которых изготовлена сама конструкция, принимающая непосредственное участие в процессе теплообмена.

По сути теплообменником для подачи горячей воды, работающим от системы отопления, может служить любая труба, которая будет передавать тепло от источника с температурой, отличной от температуры помещения. Вы можете легко в этом убедиться если посмотрите видео, которое выкладывают на yotube мужики с прямыми руками.

Основные виды теплообменников

Среди большого ассортимента теплообменного оборудования существует всего два основных типа – пластинчатые и кожухотрубные. Второй тип из-за низкого КПД и внушительных габаритов практически исчез с рынка.

Пластинчатый теплообменник – это ряд одинаковых гофрированных пластин, установленных на жесткой металлической станине. Пластины следуют в зеркальном отражении по отношению друг к другу, разделяются они при помощи специальных металлических (стальных) и резиновых прокладок.

Чем больше пластин, чем больше их размер, тем больше площадь полезного теплообмена.

Абсолютно все пластинчатые теплообменные аппараты делятся на два типа:

Основное преимущество данного типа теплообменных аппаратов состоит в том, что в любой момент времени у Вас имеется возможность доработки, которая заключается в добавлении или удалении пластин.

Этот тип теплообменных аппаратов нашел широкое применение в регионах с жесткой водой, что делает возможным регулярную ручную чистку аппарата от накипи, мусора.

Отсутствие зажимной конструкции позволило выполнить пластинчатые теплообменники более компактными по своим габаритам.

Паяные теплообменники (неразборные)

Давайте выделим основные преимущества паяных теплообменников над разборным типом:

  • Компактные габариты, небольшой вес;
  • Более продолжительный срок эксплуатации оборудования;
  • Высокая устойчивость к высоким давлениям и перепадам температур.

Что касается чистки паяных теплообменников, то она выполняется без разборки основной конструкции.

Если после определенного периода эксплуатации вы стали замечать, что эффективность оборудования стала заметно снижаться, то в него на несколько часов заливается определенный реагент, который справляется со всеми отложениями. Теплообменник не будет функционировать всего несколько часов, после продолжится его нормальный режим работы.

Основные материалы для теплообменных агрегатов

Основным материалом для изготовления современных теплообменных аппаратов является сталь и чугун, которые имеют высокие показатели по теплопроводности.

Теплообменное оборудование из чугуна

Теплообменное оборудование, изготовленное из чугуна, имеет следующие плюсы:

  • Высокие показатели по теплопроводности. Абсолютно любой чугунный элемент быстро нагревается, передавая тепловую энергию другим носителям;
  • Чугун медленно остывает. Это свойство позволяет заметно сэкономить на работе всей отопительной системы, нет необходимости постоянно включать все оборудование, когда она остынет;
  • Чугун является устойчивым к накипи, он менее подвержен появлению коррозии;
  • возможность расширения функциональных возможностей, подразумевающая увеличение чугунных секций после установки самого агрегата. Выполнив такую модернизацию, вы можете добиться заметного увеличения мощности.

Как и у всех аппаратов, у чугунного теплообменника есть свои минусы:

  • Хрупкость. Несмотря на внушительные габариты, это оборудование боится механических повреждений;
  • Низкая устойчивость к резким температурным перепадам. Они могут привести к появлению трещин и снижению мощности аппарата;
  • Внушительный вес и большие габариты оборудования.

Стальной аппарат имеет ряд преимуществ над своим чугунным «собратом»:

  • Повышенная теплопроводность;
  • Небольшой вес;
  • Ударопрочность (не боится механических воздействий);
  • Устойчивость к изменениям температур внутри системы.

Среди недостатков необходимо обратить внимание на следующие позиции:

  • Восприимчивость к коррозии;
  • Нет возможности увеличить мощность аппарата;
  • Достаточно быстрое остывание теплообменника (повышенный расход топлива).

Конструкция внутреннего теплообменника представляет собой некий бак, с помещенной в него трубкой. Чтобы изготовить такой аппарат своими руками Вам необходимо использовать:

  • Металлический бак;
  • Металлическую трубку;
  • Анод;
  • Регулятор мощности.

Для изготовления теплообменника необходимо скрутить трубку в спираль. Далее в емкости делается два отверстия – выхода. Нижний из них будет использоваться для холодной воды, верхний – для горячей.

В сети существует отличное видео как самостоятельно изготовить элементарный теплообменик, но в рамках сайта его не размещаем, тк автор использует ненормативную лексику. Посмотреть можно самостоятельно на .

Особенности монтажа теплообменного оборудования

Как только все детали аппарата будут готовы, можно приступать непосредственно к монтажу. Эта операция имеет следующую последовательность:

  • Нарезание резьбы на входе и выходе теплообменного аппарата;
  • Соединение входа оборудования с системой отопления при помощи специальной муфты;
  • Аналогичная муфта используется для соединения выхода теплообменника с трубой ГВС.

В случае использования аппарата внутреннего типа, необходимо выполнить следующие действия:

  • Внутри бака монтируется анод;
  • Через низ бака подводится труба, соединенная с отопительной системой, через верх – труба забора холодной воды.

Сверху и снизу бак должен быть надежно запаян. Такие меры позволяют избежать попадания воздуха в емкость, что может негативно сказаться на теплопотерях.

Борьба с накипью в системе

Одной из основных проблем эксплуатации любых теплообменных аппаратов является образование накипи.

Слой накипи выступает как некий теплоизоляционный материал, который препятствует быстрому нагреву теплообменника до нужной температуры, из-за чего приходится затрачивать больше электрической энергии.

Сегодня производители используют в своих конструкциях отполированные особым образом трубки, изготовленные из специальных материалов.

Новейшие достижения в борьбе с накипью основаны на магнитном воздействии на воду, что позволяет снизить количество отложений. Образец установки для удаления известковых отложений показан на фото выше.

Особенности расчета теплообменника для ГВС

Выполняя расчет теплообменных аппаратов необходимо учитывать следующие параметры:

  • Количество пользователей, которые будут использовать теплообменное оборудование;
  • Приблизительный расход горячей воды, необходимый на одного потребителя;
  • Максимальная температура теплоносителя;
  • Температура воды в указанный период;
  • Теплопотери, на которые, исходя из практических соображений, закладывается порядка 5%;
  • Количество точек водозабора, которым относятся все имеемые в помещении краны, смесители и душ;
  • Период эксплуатации: постоянный/периодический.

Как правило, производительность теплообменника рассчитывается по данным зимнего периода, когда от аппарата требуется максимальная мощность.

Как видно, каждый вид теплообменника имеет схожий принцип работы. У каждого из них есть свои преимущества и недостатки, поэтому выбор того или иного типа напрямую будет зависеть от решения конкретных задач, которые перед вами стоят.

Источник: http://bydom.ru/news/read/teploobmennik-dlya-goryachej-vody-otopleniya.html

Пластинчатый теплообменник для горячего водоснабжения

Обеспечить себе в доме или квартире горячее водоснабжение можно многими способами и непосредственный нагрев, например прямоточным электронагревателем или бойлером – не самый эффективный способ.

В простоте и надежности отлично зарекомендовал себя пластинчатый теплообменник ГВС.

Если есть источник тепла, например автономное отопление или даже централизованное, то тепло для нагрева воды вполне разумно взять от них, не тратя дорогостоящее электричество для этих целей.

Устройство и принцип работы

Пластинчатый теплообменник (ПТО) обеспечивает переход тепла от нагретого теплоносителя холодному, при этом не перемешивая их, развязывая два контура между собой. Теплоносителем может быть пар, вода или масло. В случае с горячим водоснабжением чаще источником тепла является теплоноситель системы отопления, а нагреваемой средой – холодная вода.

Конструктивно теплообменник представляет собой группу гофрированных пластин, собранных параллельно друг другу. Между ними образуются каналы, по которым течет теплоноситель и нагреваемая среда, притом послойно они чередуются между собой, не перемешиваясь при этом. За счет чередования слоев, по которым текут жидкости обоих контуров, увеличивается площадь теплообмена.

Схема работы теплообменника

Гофрирование чаше выполняется в виде волн, притом ориентированных так, чтобы каналы одного контура располагались под углом к каналам второго контура.

Подключение входов и выходов делаются так, чтобы жидкости текли навстречу друг другу.

Поверхность и материал пластин подбирается исходя из требуемой мощности теплообмена, вида теплоносителя. В особенно эффективных и продуманных теплообменниках поверхность формуется для возбуждения завихрений возле поверхности пластины, повышая теплообмен, не создавая сильного сопротивления общему току.

Теплообменник включается между двумя контурами:

  1. Последовательно к системе отопления или параллельно с наличием регулирующей арматуры.
  2. К входу от холодного водопровода и выходом к потребителю ГВС.

Холодная вода, протекая через теплообменник нагревается за счет тепла от системы отопления до требуемой температуры и подается на кран потребителя.

Основные характеристики пластинчатого теплообменника:

  • Мощность, Вт;
  • Максимальная температура теплоносителя, оС;
  • Пропускная способность, производительность, литры/час;
  • Коэффициент гидравлического сопротивления.

Мощность зависит от общей площади теплообмена, перепада температур в обоих контурах между входов и выходом и даже от числа пластин.

Максимальная температура задается подбором материалов и способом соединения пластин и корпуса теплообменника.

Пропускная способность повышается с увеличением числа пластин, так как они подключаются фактически параллельно, то каждая новая пара пластин добавляет дополнительный канал для тока жидкости.

Коэффициент гидравлического сопротивления важен при расчете нагрузки на систему отопления, где от этого зависит выбор циркуляционного насоса, немаловажен и для других источников тепла. Зависит от типа гофрирования пластин и размера сечения каналов и их количества.

Для наиболее востребованных случаев, каким является обеспечение горячей водой частного хозяйства, дома или квартиры производятся готовые теплообменники с постоянными характеристиками.

Расчет

Выбор подходящего теплообменника сложно выполнить, оперируя только одной лишь его мощностью или пропускной способностью.

Эффективность подготовки ГВС зависит и от состояния теплоносителя в первом контуре и во втором, от материала и конструкции теплообменника, скорости и массовой части теплоносителя, проходящего в единицу времени через пластинчатый теплообменник.

Однако, естественно следует предварительно выполнить расчет, позволяющий прийти к определенному сочетанию мощности и производительности для выбора подходящей модели.

Базовые данные необходимые для расчета:

  • Тип среды в обоих контурах (вода-вода, масло-вода, пар-вода)
  • Температура теплоносителя в системы отопления;
  • Максимально допустимое снижение температуры теплоносителя после прохождения теплообменника;
  • Начальная температура воды, используемой для ГВС;
  • Требуема температура ГВС;
  • Целевой расход горячей воды в режиме максимального потребления.

Кроме этого в формулах для расчета задействована удельная теплоемкость жидкости в обоих контурах. Для ГВС используется табличное значение для начальной температуры воды, чаще +20оС, равное 4,182 кДж/кг*К.

Для теплоносителя следует отдельно находить значение удельной теплоемкости, если в его составе имеется антифриз или другие присадки для улучшения его качеств.

Аналогично для централизованного отопления берется приблизительное значение или фактическое на основании данных теплокоммунэнерго.

Целевой расход определяется количеством пользователей для горячей воды и количеством устройств (краны, посудомоечная и стиральная машинка, душ), где она будет использована. Согласно требованиям СНиП 2.04.01-85 необходимы следующие значения расхода горячей воды:

  • для раковины – 40 л/ч;
  • ванная – 200 л/ч;
  • душевая – 165 л/ч.

Значение для раковины умножается на количество устройств в доме, которые могут использоваться параллельно, и складывается со значением для ванны или душевой в зависимости от того, что именно используется. Для посудомоечной и стиральной машинки значения берутся из паспорта и инструкции и только при условии, что они поддерживают использование горячей воды.

Второе базовое значение – это мощности теплообменника. Рассчитывается исходя из полученного значения расхода жидкости и разницы температур воды на входе в теплообменник и на выходе.

P = m * С *Δt,

где m – расход воды, С – удельная теплоемкость, Δt – разница температур воды на входе и выходе ПТО.

Для получения массового расхода воды следует расход, выраженный в л/ч умножить на плотность воды 1000 кг/м3.

КПД теплообменников оценивается на уровне 80-85%, и многое зависит от конструкции самого оборудования, так что полученное значение следует разделить на 0,8(5).

С другой стороны ограничением по мощности будет расчет, выполненный со стороны первого контура с теплоносителем, где, используя уже разницу допустимых температур для системы отопления, получаем максимально допустимый забор мощности. Конечный результат будет компромиссом между двумя полученными значениями.

Если забора мощности для нагрева нужного количества горячей воды не хватает, то разумнее использовать две ступени подогрева и, соответственно, два теплообменника.

Мощность распределяется между ними поровну от требуемого расчета. Одна ступень выполняет предварительный нагрев, используя в качестве источника тепла обратку отопления с пониженной температурой.

Второй ПТО уже нагревает окончательно воду за счет горячей воды с подачи отопления.

Схема обвязки

Подключают теплообменник к системе отопления несколькими способами. Самый простой вариант с параллельным включением и наличием регулировочного клапана, работающего от термоголовки.

Обязательными являются запорные шаровые вентили на всех выводах теплообменника, чтобы иметь возможность полностью перекрыть доступ жидкости и обеспечить условия для демонтажа оборудования.

Регулировкой мощности и, соответственно, нагревом горячей воды должен заниматься клапан с управлением от термоголовки.

Клапан устанавливается на подводящую трубу от отопления, а датчик температуры на выход контура ГВС.

При цикличной организации ГВС с наличием накопительной емкости устанавливается дополнительно тройник на входе нагреваемого контура для включения холодной водопроводной воды и обратки по ГВС. Избежать ненужного тока в обратном направлении в ветке горячей и холодной воды не даст обратный клапан.

Недостатком этой схемы является сильно завышенная нагрузка на систему отопления и неэффективный нагрев воды во втором контуре при большем перепаде температур.

Гораздо продуктивнее и надежнее работает схема с двумя теплообменниками, двухступенчатая.

1 – пластинчатый теплообменник; 2 – регулятор температуры прямого действия: 2.1 – клапан; 2.2 – термостатический элемент; 3 – циркуляционный насос ГВС; 4 – счетчик горячей воды; 5 – электро-контактный манометр (защита от «сухого хода»)

Идея заключается в использовании двух теплообменников. В первой ступени используется с одной стороны обратка системы отопления, а с другой холодная вода из водопровода.

Это дает предварительный нагрев примерно на 1/3 или половину от необходимой температуры, при этом не страдает обогрев дома.

Включение контура выполняется последовательно с байпасом, на котором уже закреплен игловой вентиль, с помощью которого регулируется объем теплоносителя.

Второй ПТО, вторая ступень, подключаемая параллельно системе отопления – это с одной стороны подача горячего теплоносителя от котла или котельной, а с другой уже подогретая на первой ступени вода ГВС.

Регулировкой первой ступени заниматься нет нужды. Устанавливаются лишь шаровые вентили на все четыре отвода и обратный клапан на подачу холодной воды.

Обвязка второй ступени идентичная параллельному подключению за исключением того, что вместо холодной воды подключается уже подогретая вода с первой ступени.

Источник: http://udobnovdome.ru/plastinchatyj-teploobmennik-gvs/

Теплообменник – это главный элемент отопительной системы. Его основная роль заключается в передаче тепловой энергии от генератора к теплоносителю.

С учетом конструктивных элементов они могут изготовляться различных видов, благодаря чему каждый хозяин сможет выбрать подходящий вариант для своей отопительной системы.

Для чего необходим теплообменник?

В домашних системах отопления чаще всего можно встретить поверхностные теплообменники. Вних передача тепла происходит через поверхности металлических стенок этого аппарата.

  • Максимальная реализация отопления через представленный аппарат наблюдается в конструкции котлов, работающих на газе, твердом топливе и электричестве. Лидер в отрасли отопительного оборудования Новосибирска компания Теплодар https://www.teplodar.ru/catalog/kotli/ производство котлов отопления.
  • Циркуляция теплоносителя происходит по трубам, изогнутым в форме змеевика. Они расположены внутри котельного агрегата, а нагрев теплоносителя осуществляется от температуры горящего топлива.
  • Горячая вода направляется в трубопровод системы отопления, а заменяет ее в теплообменнике остывший носитель тепла из радиаторов.

Даже сегодня во многих домах присутствует традиционный источник тепловой энергии – печь. Ее целесообразно использовать для дома небольшой площади. Если речь идет о многокомнатном коттедже, то ее тепловой мощности будет недостаточно.

По этой причине в частных домах отопительная система не может нормально функционировать без этого элемента. Именно благодаря ему удается превратить печь в полноценный водонагревательный котел.

Что касается габаритов и формы контура для отопления, выполненного своими руками, то они должны вписаться в размер топливной камеры печной установки.

К полученному агрегату реально подключить батареи и трубопроводы, в результате чего можно добиться эффективного обогрева здания.

Виды теплообменников

Теплообменные агрегаты могут быть различных типов. Их отличие заключается в способе передачи тепловой энергии. Выделяют следующие виды представленных аппаратов:

  1. Смесительные. В них передача тепловой энергии осуществляется благодаря смешению двух рабочих сред. По конструкции эти устройства намного проще, чем поверхностные. Использовать такие агрегаты получается только при условии возможности смешивания носителей тепла. Это условие и служит главным недостатком смесительных приборов.
  2. Поверхностные. В них осуществляется обмен энергией между рабочиминосителями тепла посредством стенок разделителя.Такие устройства подразделяются на рекуперативные и регенеративные.

    В рекуперативных при передаче тепловой энергии через разделительную стенку поток тепла движется в одном направлении в каждой точке стенки.

    Для регенеративного теплообменного аппарата свойственно то, что носитель тепла при попеременном касании одной и той же поверхности, время от времени изменяет направление потока.

Типы рекуперативных теплообменников

Большим спросом на сегодня пользуются рекуперативные теплообменные устройства. Согласно конструкционному исполнению выделяют следующие виды представленных агрегатов:

Кожухотрубный

Это устройство, представляющее собой пучки труб, приваренные к кожуху и прикрепленные к трубным решеткам при помощи болтов.

Движение первого носителя тепла в межтрубном пространстве осуществляется через присутствующие на корпусе штуцера. Другой теплоноситель течет по трубам. На корпусе или крышке представленных устройств присутствуют перегородки.

В целях повышения отдачи тепла трубы подвергают процессу оребрения методом накатки или навивки ленты.

Погруженный

Его конструкция предполагает погружение одного теплоносителя в емкость с другим. Такие устройства характеризуются дешевизной и простотой.

Движение воды в межтрубном пространстве происходит с малой скоростью, результатом чего становится малая теплоотдача.

Теплообменные устройства типа «труба в трубе»

Состоит из нескольких звеньев, расположенных друг над другом и соединенных между собой. Каждое звено представляет собой конструкцию из вставленных друг в друга труб, между которыми и происходит теплообмен.Их целесообразно эксплуатировать при высоких показателях давления и небольших расходах воды в системе.

Оросительный

Состоит из нескольких рядов труб, расположенных одна над другой, по наружной поверхности которых тонкой пленкой стекает охлаждающая их вода

Его активно применяют в холодильных установках, так как они выступают в роли конденсаторов.

Графитовый

Конструкция теплообменного устройства предполагает наличие блоков из графита, уплотненных между собой при помощи прокладок из резины и зафиксированных крышками.Графит считается прекрасным проводником тепловой энергии. Для устранения пористости происходит его обработка специальными составами.

Используется для химически агрессивных жидкостей.

Пластинчатый

Это устройство изготовлено из пластин, поверхность которых отштампована специальным методом. Результатом такой работы становится образование каналов, по которым движется теплоноситель.

Между собой пластины уплотнены.Процесс изготовления такого устройства отличается своей простотой, его легко чистить, он обладает высокой теплоотдачей. Минус – не выдерживает высокое давление.

Пластинчато-ребристый

Состоит из системы разделительных пластин, между которыми находятся ребристые поверхности — насадки, присоединенные к пластинам методом пайки в вакууме.

Предназначены для теплообмена между неагрессивными жидкими и газообразными средами в интервале температур от плюс 200 °C до минус 270 °C.

Обладает малым весом и размерами, высокой прочностью и жесткостью.

Оребренно-пластинчатый

Его конструкция предполагает наличие оребренных панелей маленькой толщины, производство которых происходит при помощи высокочастотной сварки.

Благодаря такой конструкции и применяемым материалам удается достичь высокого температурного режима теплоносителя, малого гидравлического давления, высокого КПД, продолжительного срока эксплуатации, низкой стоимости.

Целесообразно его использовать при утилизации тепла газов.

Спиральный

Оснащен двумя каналами, которые навиты в форме спирали около основной разделительной перегородки. Их цель – нагрев и охлаждения жидкостей, обладающих высоким показателем вязкости.

Устройство и принцип работы

Современные модели теплообменного устройства имеют несколько частей. Для каждой характерна своя важная роль:

  • неподвижная плита – к ней крепят все подводимые патрубки;
  • прижимная плита;
  • пластины, оснащенные вставленными прокладками уплотнительного типа;
  • верхняя и нижняя направляющие;
  • задняя стойка;
  • шпильки с резьбой.

Такая уникальная конструкция теплообменного устройства позволяет достичь максимально эффективной компоновки всей поверхности эксплуатируемого агрегата.

Популярные производители

На современном рынке эта продукция представлена в широком ассортименте. Существуют многочисленные модели и производители. Основные критерии выбора:

  • надежность и качество;
  • ремонтопригодность;
  • цена;
  • гарантии;
  • запасные детали.

Смотрите видео о том, как сделать теплообменник своими руками

Рассмотрим подробнее, кто входит в рейтинг лучших изготовителей системы, и цены на них:

  1. Кролл. Производимые модели теплообменников – серии S, SKE, H, SL, NKA, NK, A. Стоимость от 200000 до 700000 рублей.
  2. Дракон-энергия. Модели теплообменных устройств: Др 30, Др 50, Др 100, Др 150, Др 200, Др 500, Др 1000. Цена от 60000 до 400000 рублей.
  3. SWEP – производит теплообменники серии GX, GC, GL, GD, GF, GW. Стоимость от 45000 до 600000 рублей.
  4. Ридан. Производит модели теплообменных устройств серии НН. Цена от 40000 до 800000 рублей.

Перед выбором необходимо обязательно ознакомиться с характеристиками каждой модели.

Теплообменное устройство— это «сердце» любой отопительной системы. Только при его наличии можно получить качественный обогрев дома. Благодаря широкому разнообразию этого отопительного аппарата, очень просто подобрать подходящий для своей системы.

Источник: https://klimatlab.com/otoplenie/sistema/teploobmennik-dlya-otopleniya.html

Теплообменник для горячей воды от отопления в частном доме: из чего и как сделать своими руками

Теплообменник для горячей воды – незаменимый элемент в системе отопления частного дома. Именно он передает тепло холодной воде, тем самым нагревая ее и обеспечивая жильцов бесперебойным горячим водоснабжением.

От продуктивности работы теплообменника напрямую зависит не только комфорт домочадцев, но и долговечность обогревательных приборов, поэтому очень важно, чтобы агрегат был выполнен качественно.

Ввиду этого многие задаются вопросом: стоит ли мастерить теплообменник своими руками или лучше не рисковать и приобрести уже готовый? Первый вариант, безусловно, сложнее, но он вполне реализуем, если детально разобраться, как сделать теплообменник: материалы, конструктивные особенности, монтаж – обо всем этом и не только пойдет речь далее.

Особенности и функции теплообменника

Прежде чем рассматривать основные моменты изготовления и монтажа теплообменника для горячей воды, абсолютно не лишним будет узнать, что же собой представляет этот агрегат и для чего он нужен.

Теплообменник – техническое устройство, соединяющее между собой два теплоносителя: холодный и горячий. Как правило, он имеет вид обычной трубной конструкции.

Между носителями беспрерывно осуществляется передача тепла – от холодного к горячему, благодаря чему дом и обеспечивается горячей водой.

Причем у теплообменника нет собственного источника тепла – он использует энергию, поступающую от системы отопления.

Таким образом, главная функция агрегата – подогрев холодной воды и получение на выходе горячей. Эффективность выполнения этой функции зависит от трех факторов:

  • температурная разница между двумя теплоносителями;
  • габариты теплообменника и, следовательно, площадь контакта носителей;
  • материал, из которого изготовлен теплообменник.

Пластинчатый теплообменник

Последний фактор важен не только в плане эффективности агрегата, но и в вопросе его изготовления и монтажа. Для выполнения теплообменника может использоваться пластик, сталь и чугун.

Первый материал не всегда эффективен ввиду своей низкой теплопроводности.

Что касается выбора между сталью и чугуном, то здесь следует сравнить характеристики двух материалов, чтобы определиться с наиболее подходящим.

Чугунный теплообменник

Плюсы тепловых агрегатов из чугуна:

  • Высокая теплопроводность – чугунные элементы быстро нагреваются и эффективно передают тепло от одного носителя к другому.
  • Медленное остывание – теплообменники из чугуна долгое время остывают, что дает возможность сэкономить на работе отопительной системы.
  • Долговечность – чугун устойчив к воздействию слабых кислот и к образованию накипи, поэтому он менее подвержен коррозии, нежели многие другие металлы, что и обеспечивает длительный срок службы теплообменника.
  • Возможность увеличения функциональности – уже после установки агрегата к нему можно нарастить новые чугунные секции, тем самым увеличив мощность теплового оборудования.

Минусы чугунных теплообменников:

  • Громоздкость – чугунные агрегаты отличаются внушительным весом, что усложняет их эксплуатацию и обслуживание. При этом, чем больше масса теплообменника, тем выше его мощность.

Совет. Обязательно учитывайте вес чугунного теплового прибора при выборе места для его установки – важно, чтобы монтажное основание было очень прочным.

  • Хрупкость – несмотря на большой вес, агрегаты из чугуна боятся механических ударов: они быстро обзаводятся трещинами, сколами и прочими деформациями.
  • Низкая устойчивость к температурным перепадам – хоть чугун и выдерживает максимально высокие температуры, от резких термических изменений на поверхности теплообменника могут появляться трещины, что чревато значительным снижением его работоспособности.

Стальной теплообменник

Преимущества приборов из стали:

  • Повышенная теплопроводность – как и чугун, сталь оперативно нагревается и отлично передает тепло холодному носителю.
  • Низкий вес – стальные теплообменники не утяжеляют общую систему отопления, поэтому их можно использовать для обеспечения горячего водоснабжения в домах большой площади.
  • Ударопрочность – стальные конструкции очень крепкие, поэтому им не страшны механические повреждения.
  • Устойчивость к термическим изменениям – сталь без последствий выдерживает резкие перепады температур внутри системы.

Недостатки стальных теплообменников:

  • Восприимчивость к коррозии – для стали характерна низкая устойчивость к кислотным средам, что значительно сокращает срок эксплуатации теплообменника.
  • Невозможность увеличить мощность устройства путем добавления новых секций.
  • Быстрое остывание – сталь быстро отдает температуру, что увеличивает расходы на топливо.

Совет. Для изготовления качественного и долговечного теплообменника рекомендуется использовать трубы из жаропрочной стали диаметром не меньше 32 мм и толщиной стенки 5 мм и более.

Изготовление теплообменника

Конструктивно теплообменники для горячей воды могут быть двух видов: внешние и внутренние. К первым относятся подкова и змеевик.

Подкова очень легка в исполнении, но не отличается высокой мощностью: для ее изготовления нужно просто сварить две чугунные или стальные трубы – в результате вы получите агрегат с маленькой площадью контакта носителей и, следовательно, с низкой мощностью нагрева поступающей холодной воды.

Более удачным вариантом внешнего теплообменника будет змеевик – он изготавливается посредством сварки нескольких труб: чем больше труб вы используете, тем мощнее будет агрегат.

Внутренний теплообменник представляет собой бак, в который помещается трубка, нагревающая поступающую в нее воду. Чтобы смастерить такой прибор своими руками, вам понадобится:

  • стальной бак для воды;
  • стальная или чугунная трубка;
  • анод;
  • регулятор мощности.

Изготовление теплообменника не займет много времени: скрутите трубку в спираль, закрепите ее на стенках бака, а затем сделайте в емкости два выхода: нижний – для холодной воды, верхний – для горячей.

Монтаж теплообменника

Когда все компоненты готовы, можно приступать к монтажу теплообменника. В случае с внешним агрегатом работа выполняется следующим образом:

  • на входе и выходе сваренной конструкции нарежьте резьбу;
  • с помощью муфты соедините вход теплообменника с системой отопления
  • используя аналогичную муфту, соедините выход теплообменника с трубой горячего водоснабжения.

Внутренний теплообменник монтируется по такой схеме:

  • вблизи батарей отопления установите бак с трубкой-термонагревателем;
  • рядом с трубкой внутри бака установите анод;
  • через нижний выход проведите в бак трубу отопительной системы, а через верхний – трубу, которая будет забирать холодную воду.

По желанию можете подключить к нагревательной трубке регулятор мощности, а к нему – термостат для управления температурой нагрева воды.

Важно! Верх и низ стального бака должны быть запаяны, чтобы предостеречь попадание в емкость воздуха, который будет забирать температуру, предназначенную для нагрева воды.

Как видим, даже столь сложный агрегат системы отопления, как теплообменник для горячей воды, вполне реально соорудить и установить своими руками. Главное – детально продумать каждый шаг: от выбора материала до финального подключения. Так что не пренебрегайте предложенной вам инструкцией – она поможет избежать ошибок в обеспечении собственного дома бесперебойной горячей водой.

Источник: https://sandizain.ru/otoplenie/teploobmennik-dlya-goryachej-vody.html

 Организация горячего водоснабжения является одним из основных условий комфортной жизни. Существует множество различных установок и систем для подогрева воды в домашней сети ГВС, однако одним из наиболее эффективных и экономичных считается метод нагрева воды от сети отопления.

 Теплообменник для горячей воды подбирается индивидуально, исходя из запросов владельца и возможностей отопительного оборудования. Правильный расчет и грамотный монтаж системы позволят вам навсегда забыть про перебои в горячем водоснабжении.

Применение пластинчатого теплообменника для ГВС

 Нагрев воды от теплосети полностью обоснован с экономической точки зрения – в отличие от классических водонагревательных котлов, использующих газ или электроэнергию, теплообменник работает исключительно на отопительную систему. В результате конечная стоимость каждого литра горячей воды оказывается для домовладельца на порядок ниже.

Пластинчатый теплообменник для горячего водоснабжения использует тепловую энергию теплосети для нагрева обычной водопроводной воды. Нагреваясь от пластин теплообменника, горячая вода поступает к точкам водоразбора – кранам, смесителям, душевую в ванной комнате и пр.

 Важно учитывать, что вода-теплоноситель и нагреваемая вода никак не контактируют в теплообменнике: две среды разделены пластинами теплообменного аппарата, через которые осуществляется теплообмен.

Использовать воду из системы отопления в бытовых нуждах напрямую нельзя – это нерационально и зачастую даже вредно:

  • Процесс водоподготовки для котельного оборудования – достаточно сложная и дорогая процедура. 
  • Для умягчения воды часто используются химические реагенты, которые негативно сказываются на здоровье.
  • В трубах отопления с годами скапливается колоссальный объем вредных отложений.

 Однако использовать воду отопительной системы косвенно никто не запрещал – теплообменник ГВС обладает достаточно высоким КПД и полностью обеспечит вашу потребность в горячей воде.

Типы теплообменников для систем ГВС

Среди множества типов различных теплообменников в бытовых условиях используются только два – пластинчатые и кожухотрубные. Последние практически исчезли с рынка вследствие больших габаритов и низкого КПД.

Пластинчатый теплообменник ГВС представляет собой ряд гофрированных пластин на жесткой станине. Все пластины идентичны по размерам и конструкции, но следуют в зеркальном отражении друг к другу и разделяются специальными прокладками – резиновыми и стальными.

В результате строгого чередования между парными пластинами образуются полости, которые заполняются теплоносителем или нагреваемой жидкостью – смешение сред полностью исключено.

Через направляющие каналы две жидкости движутся навстречу друг другу, заполняя каждую вторую полость, и так же, по направляющим, выходят из теплообменника отдав/получив тепловую энергию.

Чем выше количество или размер пластин в теплообменнике – тем больше площадь полезного теплообмена и выше производительность теплообменника.

У многих моделей на направляющей балке между станиной и запорной (крайней) плитой остается достаточно пространства, чтобы установить несколько плит аналогичного типоразмера.

В этом случае дополнительные плиты всегда устанавливаются парами, иначе потребуется менять направление «вход-выход» на запорной плите.

Схема и принцип работы пластинчатого теплообменника ГВС

Все пластинчатые теплообменники можно разделить на:

  • Разборные (состоят из отдельных плит)
  • Паяные (герметичный корпус, не разборные)

Преимущество разборных теплообменников заключается в возможности их доработки (добавление или удаление пластин) – в паяных моделях эта функция не предусмотрена. В регионах с низким качеством водопроводной воды такие теплообменники можно разбирать и очищать от мусора и отложений вручную. 

Более высокой популярностью пользуются паяные пластинчатые теплообменники – из-за отсутствия зажимной конструкции они имеют более компактные размеры, чем разборная модель аналогичной производительности.

Компания «МСК-Холод» производит подбор и продажу паяных пластинчатых теплообменников ведущих мировых брендов – Alfa Laval, SWEP, Danfoss, ONDA, KAORI, GEA, WTT, Kelvion (Кельвион Машимпэкс), Ридан.

У нас вы можете купить теплообменник ГВС любой производительности для частного дома и квартиры.

Преимущество паяный теплообменников в сравнении с разборными

  • Небольшие габариты и вес
  • Более строгий контроль качества
  • Продолжительный срок службы
  • Устойчивость к высоким давлениям и температурам

Очистка паяных теплообменников выполняется безразборным методом.

Если по истечении определенного периода эксплуатации начали снижаться теплотехнические характеристики, то в аппарат на несколько часов заливается раствор реагента, удаляющего все отложения. Перерыв в работе оборудования составит не более 2-3 часов.

Схемы подключения теплообменника ГВС

Теплообменник вода-вода имеет несколько вариантов подключения. Первичный контур всегда подключается к распределительной трубе теплосети (городской или частной), а вторичный – к трубам водоснабжения. В зависимости от проектного решения можно использовать параллельную одноступенчатую схему ГВС (стандартная), двухступенчатую смешанную или двухступенчатую последовательную схему ГВС.

Схема подключения определяется согласно нормам «Проектирования тепловых пунктов» СП41-101-95.

В случае, когда соотношение максимального потока тепла на ГВС к максимальному потоку тепла на отопление (QГВСmax/QТЕПЛmax) определяется в границах ≤0,2 и ≥1 за основу принимается одноступенчатая схема подключения, если же соотношение определяется в пределах 0,2≤ QГВСmax/QТЕПЛmax ≤1, то в проекте используется двухступенчатая схема подключения.

Стандартная

Параллельная схема подключения считается наиболее простой и экономичной в реализации. Теплообменник устанавливается последовательно относительно регулирующей арматуры (запорного клапана) и параллельно теплосети. Для достижения высокого теплообмена системе требуется большой расход теплоносителя.

Двухступенчатая

При использовании двухступенчатой схемы подключения теплообменника нагрев воды для ГВС осуществляется либо в двух независимых аппаратах, либо в установке-моноблок. Вне зависимости от конфигурации сети схема монтажа значительно усложняется, но значительно повышается КПД системы и снижается расход теплоносителя (до 40%).

Подготовка воды выполняется в два этапа: на первом используется тепловая энергия обратного потока, которая нагревает воду примерно до 40°С. На втором этапе вода подогревается до нормированных показателей 60°С.

Двухступенчатая смешанная система подключения выглядит следующим образом:

Двухступенчатая последовательная схема подключения:

Последовательную схему подключения можно реализовать в одном теплообменном аппарате ГВС. Этот тип теплообменника более сложное устройство в сравнение со стандартными и стоимость его порядком выше.

Расчет теплообменника для ГВС

При расчете теплообменника ГВС учитываются следующие параметры:

  • Количество жильцов (пользователей)
  • Нормативный суточный расход воды на одного потребителя
  • Максимальная температура теплоносителя в интересующий период
  • Температура водопроводной воды в указанный период
  • Допустимые теплопотери (нормативно – до 5%)
  • Количество точек водозабора (краны, душ, смесители)
  • Режим эксплуатации оборудования (постоянный/периодический)

Производительность теплообменника в городских квартирах (подключение к муниципальной теплосети) зачастую рассчитывается исключительно по данным зимнего периода. В это время температура теплоносителя достигает 120/80°С.

Однако в весенне-осенний период показатели могут упасть до 70/40°С, в то время, как температура воды в водопроводе остается критично низкой.

Поэтому расчет теплообменника желательно проводить параллельно для зимнего и весенне-осеннего периодов, при этом никто не может дать гарантии, что расчеты окажутся на 100% верны – ЖКХ нередко «пренебрегают» общепринятыми стандартами обслуживания потребителей.

В частном секторе, при монтаже теплообменника к собственной системы отопления, точность расчета на ступень выше: вы всегда уверены в работе своего котла и можете указать точную температуру теплоносителя.

Наши специалисты помогут вам выполнить правильный расчет теплообменника для ГВС и подобрать наиболее подходящую модель. Расчет выполняется бесплатно и занимает не более 20 минут – укажите свои данные и мы вышлем вам результат.

Источник: http://msk-holod.ru/info/articles/teploobmennik-gvs/

Поделиться:

Нет комментариев

Теплообменник для горячей воды от отопления в многоквартирном доме

Главная » Отопление » Теплообменник для горячей воды от отопления в многоквартирном доме

Теплообменником называется важный тепловой элемент отопительной системы. Его важность обуславливается тем, что именно он производит нагрев и передачу тепла между генератором и всеми приборами системы отопления. Ввиду различных конструктивных особенностей теплообменники делятся на виды. Исходя от этого, потребителю намного легче определиться с тем, какой прибор ему потребуется.

Как выглядит теплообменник

Предназначение и принцип работы

Модели теплообменных устройств для частного дома и квартиры отличны друг от друга. В домах чаще всего используются поверхностные теплообменники. Основная особенность теплообменников этого типажа заключается в их способности передавать тепло прямиком через металлические стенки устройства.

Максимальный уровень КПД такого прибора можно наблюдать, например, в котлах, работающих на электричестве, газу и любом твердом топливе. Внутри котла для циркуляции теплоносителя находятся трубки в форме змеевика. Нагревается теплоноситель непосредственно за счет горящего внутри топлива. Нагретый теплоноситель проходит по всей отопительной системе и возвращается в змеевик.

В некоторых частных домах и в наше время используются печи как основной источник тепла. Для дома с большой площадью нет смысла использовать такое устройство, однако, для небольших строений – это наилучший вариант. Для того чтобы качественно отопить целый коттедж, тепловой мощности печи будет чрезвычайно мало.

Для обогрева огромного дома при помощи печи следует использовать теплообменник. Прибор позволит нагреть теплоноситель до необходимого уровня, а радиаторы разнесут это тепло по всем помещениям коттеджа.

При использовании теплообменника площадь дома не имеет значения. Устройство повышает КПД отопительной системы в несколько раз.

Строение

Схема строения теплообменника для горячего водоснабжения

Любое теплообменное устройство состоит из нескольких деталей. Каждая деталь играет свою роль:

  • передняя плита (опорная) – на ней закрепляются все составляющие компоненты и подводимые патрубки;
  • прижимная плита – вспомогательная плита, закрывающая теплообменник с обратной от передней плиты стороны;
  • поддерживающая колонна – придерживает прибор со стороны прижимной плиты;
  • нижняя и верхняя направляющие (балки) – выполняют опорную функцию;
  • шпильки фланцевого соединения – фиксируют вводные и выводные трубы;
  • пакет пластин – это пластины, необходимые для теплообмена (между пластинами находится уплотнитель);
  • задняя стойка – выполняет опорную функцию в задней части теплообменника;
  • стяжные болты – скрепляют все составляющие части от задней стойки до передней плиты;
  • пята – части, выполняющие роль поддерживающих ножек.

Такая конструкция позволяет пропускать тепло через весь прибор, при этом его не теряя. При ином строении достижение максимального уровня КПД невозможно.

Виды

За все время существования теплообменников была придумана и модернизирована не одна их разновидность. Ниже приведены наиболее популярные разновидности приборов.

Смесительный

Смесительный тип теплообменников имеет несложное строение, в котором передача тепла происходит посредством смешивания двух рабочих сред, например, при смешении жидкости и водяного пара. Очень важно, чтобы среды были однородными.

Внешний вид смесительного теплообменника

Прибор не будет работать, если отсутствует одна или обе рабочие среды. Тоже можно сказать, если в теплообменнике будут фигурировать не однородные вещества, например, вода и газ.

Поверхностный

Поверхностный вид теплообменников представляет собой сложное устройство, работающее за счет перемещения теплоносителя между стенками разделителя.

Внешний вид поверхностного теплообменника

Такие теплообменники делятся на два подтипа: регенеративные и рекуперативные. В случае с первым подтипом теплообменник попеременно касается одной и той же стенки нагревательного устройства, меняя, время от времени, направление потока. При этом следует заметить, что теплоноситель касается всех точек поверхности без исключения.

Поверхностные теплообменники рекуперативного подтипа имеют всего одно направление потока. За нагрев отвечает постоянная циркуляция теплоносителя от одной разделительной точки прибора к другой.

Погружной

Погружной теплообменник обладает самой простой конструкцией и имеет весьма приемлемую стоимость. Главным недостатком этого прибора является его слабая теплоотдача.

Принцип работы погружного теплообменника строится на погружении одного теплоносителя в емкость с другим. При этом теплообменники находятся в разных сосудах.

Внешний вид погружного теплообменника
Кожухотрубный

Кожухотрубный теплообменник состоит из набора трубок, приваренных к кожуху. Массивные болты закрепляют эти трубки на трубных решетках, образуя, тем самым, цельный прибор.

Как выглядит кожухотрубный теплообменник

За работу теплообменника отвечают два теплоносителя: первый – движется в межтрубном пространстве, через штуцера в корпусе; второй теплоноситель проходит непосредственно по трубам.

Для того чтобы повысить КПД этого типа устройств, иногда выполняют оребрение. Такая операция проводится двумя способами: навивкой ленты или накаткой.

Оросительный

Конструктивно этот тип теплообменника представляет собой последовательно идущие друг за другом ряды из труб. По поверхностям (внешним) этих труб постоянно стекает охлаждающая вода.

Принцип работы оросительного теплообменника

Такую конструкцию практично использовать в холодильных установках, ввиду того, что оросительный теплообменник может быть конденсатором, то есть не требуются излишние подключения.

«Труба в трубе»

Конструктивно теплообменник «труба в трубе» имеет несколько звеньев, которые располагаются в строгой последовательности друг над другом. Каждое звено при этом соединяется с соседним.

Теплообменник «труба в трубе»

Звенья, в свою очередь, имеют устройство с конструктивными особенностями: каждое звено представляет собой набор труб, проходящих внутри друг друга. Именно между этими трубками и происходит обмен тепла.

Наиболее правильно будет использовать такой тип теплообменника при достаточно высоких показателях давления в системе. Также следует учесть то, что расход воды в системе должен быть минимальным.

Пластинчатый

Как видно из названия, устройство такого типа состоит из пластин. Поверхность каждой пластины отштампована по специализированной методике. Из-за штамповки образуются каналы, по которым в дальнейшем протекает теплоноситель.

Большой пластинчатый теплообменник

Связь между пластинами имеет значительное уплотнение. Благодаря этому существует 100-процентная гарантия герметичности.

Во время эксплуатации устройство не требует к себе особого внимания. Для изготовления пластинчатого теплообменника не обязательно обладать специализированными знаниями или навыками.

Кроме прочего, устройство легко чистится от различных загрязнений, но не способно выдерживать массивного гидравлического давления.

Спиральный

В спиральном теплообменнике присутствует два канала, имеющие форму спирали. Спираль навита прямо у основной перегородки.

Спиральный теплообменник для водоснабжения

Спиральные теплообменники имеют достоинство, состоящее в возможности охлаждения и нагрева разнообразных жидкостей с высоким показателем вязкости. Следует отметить, что это единственный тип теплообменников, способный без проблем работать с жидкостями подобной консистенции.

Оребренно-пластинчатый

В конструкции этого теплообменника используются пластины, созданные при помощи высокочастотной сварки. Каждая такая пластина (тонкая панель) проходит процедуру оребрения, что и придает прибору уникальные особенности.

Оребренно-пластинчатый теплообменник

Благодаря конструктивным особенностям, оребренно-пластинчатый теплообменник:

  • сокращает гидравлическое давление в системе;
  • позволяет нагреть теплоноситель до максимально возможного уровня;
  • повышает общее КПД отопительной системы;
  • увеличивает срок службы всей системы.
Пластинчато-ребристый

Этот вид прибора представляет собой набор пластинок, скрепленных между собой ребренными поверхностями. Сами ребренные поверхности представляют собой насадки, спаянные с пластинами методом вакуумной пайки.

Пластинчато-ребристые теплообменники способны сдерживать температуру от 200 до 270 градусов по Цельсию. Максимальная работоспособность теплообменника гарантирована только при теплообмене между жидкими и газообразными веществами в неагрессивном состоянии.

Производители

Изделия лидирующих производителей различаются по нескольким критериям:

  • цена;
  • надежность и качество;
  • возможность ремонта прибора;
  • наличие запасных деталей;
  • гарантия (в том числе, гарантия надежности и качества).

Все приводимые ниже производители зарекомендовали себя среди потребителей как лучшие.

Кролл

Страна – Германия.

Стоимость устройств колеблется в диапазоне от 200000 до 700000 рублей.

Всего существует 7 серий производимой продукции: S, SKE, H, SL, NKA, NK, A.

Компания Кролл имеет высокий уровень популярности среди потребителей за счет того, что производит исключительно качественную продукцию.

Ридан

Страна – Россия.

Стоимость устройств колеблется в диапазоне от 40000 до 800000 рублей.

Производится только одна серия теплообменных приборов: HH.

Ввиду того, что компания занимается производством всего одной разновидности теплообменных приборов, ее нельзя назвать универсальным производителем.

SWEP

Страна – Швеция.

Стоимость продукции колеблется в диапазоне от 45000 до 600000 рублей;

Всего существует 6 серий теплообменников: GX, GC, GL, GD, GF, GW.

SWEP имеет большое влияние на рынке, благодаря оптимальному соотношению цены и качества своей продукции.

Дракон-энергия

Страна – Украина.

Стоимость изделий колеблется в районе от 60000 до 400000 рублей (самая дешевая продукция среди лидирующих компаний).

Теплообменники производятся 7 серий: Др 30, Др 50, Др 100, Др 150, Др 200, Др 500, Др 1000.

Продукция компании пользуется большим спросом из-за активного производства приборов различных видов.

Видео про паяный теплообменник

Актуальные подробности про паяный пластинчатый теплообменник системы горячего водоснабжения можно узнать из этого видео.

С уверенностью можно сказать, что теплообменное устройство является сердцем отопительной системы. Без него невозможно контролировать уровень нагрева теплоносителя и другие важные факторы.

При выборе устройства следует проявить некоторую осторожность ввиду существования десятков различных производителей. В первую очередь, следует присмотреться к продукции лидирующих компаний.

Во время выбора необходимо внимательно изучать каждый аспект характеристик той или иной модели теплообменника. Следует придерживаться правила: устройство должно полностью удовлетворять требованиям потребителя.

Теплообменник в системе отопления дома

aqueo.ru

Теплообменник для горячей воды от отопления

Основная область применения пластинчатых теплообменников, это получение горячей воды от отопления. Справедливый вопрос, зачем нужен теплообменник, если горячую воду можно напрямую брать из системы отопления без всяких дополнительных затрат, тем более что говоря, что она по качеству соответствует той, которую сейчас привозят в офисы и продают в магазинах в пятилитровых бутылях.

Скажем просто это запрещено по нескольким соображением:

  • приготовление исходной воды для системы отопления дорого;
  • подпитка новой сырой водой плохо сказывается на котлах установленных в котельных;
  • иногда для умягчения воды и естественно отложений в трубах используется химические добавки, комплексоны, а они не так уж безвредны для организма человека;
  • трубы, по которым вода подается через тепловые пункты, а через них в теплообменники не так уж и чисты, они рассчитаны на техническую воду, а какие микробы поселились в них за долгие годы их существования известно только богу, ведь они служат не менее 30 лет, и при этом летом пустые.

Именно поэтому проектировщики совместно с конструкторами и придумали теплообменник, который, забирая тепло из системы отопления, приготавливает или нагревает горячую воду безвредную для нашего здоровья. Именно поэтому вода в системе отопления проходящая через теплообменники не должна быть ниже 70 градусов, при такой температуре погибают основные микробы, живущие в закрытой системе отопления.

Основные преимущества пластинчатых теплообменников для горячей воды от отопления перед классическими. Затраты на обслуживание.

Схема индивидуального теплового пункта с теплообменником для подачи горячей воды от отопления в многоэтажный жилой дом.

До недавнего времени основным видом теплообменников, вырабатывающих воду для ГВС, были громоздкий кожухотрубный теплообменник, и только совсем недавно им на смену пришли более компактные и эффективные пластинчатые теплообменники, которые не хуже справляются со своей задачей – получением горячей воды от отопления.

Подключение пластинчатых теплообменников к системе отопления имеет ряд неоспоримых преимуществ и выгод это:

  • Недорогой монтаж, особенно доставка в подвальное помещение;
  • Легкое обслуживание, оно необходимо только раз в год – для очистки и промывки внутренних полостей пластинчатого теплообменника, как со стороны отопления, так и со стороны горячей воды;
  • Устойчивость к гидравлическим ударам и перепадам температур, из-за этих перепадов обычный теплообменник сплошь покрывается грибками и наростами по течам;
  • Легкая автоматизация, простой доступ к обслуживанию, малая собственная площадь, излучающая тепло в помещение.

Если кто был в старых бойлерных, знает, какая там стоит жара, а за это тепло выброшенное на ветер. Потребителю, т.е. нам с вами приходиться платить не малые деньги за это тепло, так и не использованное для приготовления горячей воды.

Благодаря замене обычных классических теплообменников на пластинчатые теплообменники для получения горячей воды от отопления:

  • существенно снижаются финансовые расходы на нагрев горячей воды для населения.
  • Улучшается качество и температурный режим горячей воды.
  • И главное — не требуется проводить отдельный трубопровод для горячего водоснабжения жилого дома от котельной.

Схема компактного блочного теплового пункта с паяными пластинчатыми теплообменниками

При полном сроке службы, а это не менее 25 лет, теплообменник для горячей воды от отопления потребует от вас на обслуживание и запасные части не более 25% его общей стоимости, а постоянное наличие горячей воды в доме залог здоровья и оберег для нервной системы.

ridan-ug.ru

Схема горячего водоснабжения многоквартирного дома: элементы и типичные проблемы

Разводка водоснабжения в подвале строящегося дома

Наша сегодняшняя тема — система горячего водоснабжения многоквартирного дома: схемы, основные элементы и типичные проблемы, с которыми может столкнуться владелец жилья. Итак, приступим.

Схема горячего водоснабжения в многоквартирном доме может быть реализована двумя принципиально разными способами:

  1. Она использует воду из магистрали холодного водоснабжения и нагревает ее теплом из автономного источника. Это может быть установленный в квартире бойлер, газовая колонка или теплообменник, использующий для нагрева теплоноситель из местной котельной или ТЭЦ;

Система ГВС при закрытой схеме теплоснабжения (без отбора воды из теплотрассы)

Обратите внимание: преимущество такой схемы — более высокое качество воды. Она должна соответствовать требованиям ГОСТ Р 51232-98 («Питьевая вода»). Кроме того, параметры горячего водоснабжения (температура и давление) крайне редко отклоняются от номинальных значений; в частности, давление ГВС всегда равно давлению ХВС с учетом потери напора при водоразборе.

  1. Она подает потребителю воду непосредственно из теплотрассы. Именно такая схема водоснабжения многоэтажного дома реализована в абсолютном большинстве жилых и административных зданий советской постройки, составляющих 90% жилого фонда на просторах нашей великой и необъятной. В дальнейшем мы сосредоточим свое внимание именно на ней.

Элеваторный узел с ГВС (черные врезки)

Дополнительную информацию уважаемый читатель сможет найти в видео в этой статье.

Итак, какие элементы включает схема водоснабжения многоквартирного жилого дома?

Водомерный узел

Он отвечает за подачу в дом холодной воды.

Водомер выполняет несколько функций:

  • Обеспечивает учет расхода воды (о чем недвусмысленно напоминает его название);
  • Позволяет отключить холодную воду на весь дом для ремонта запорной арматуры или устранения течей розливов;
  • Осуществляет грубую фильтрацию воды на входе в дом. Для этого водомер снабжается грязевиком.

Водомер на вводе холодной воды в многоквартирный дом

В состав водомера входят:

  1. Входная и домовая запорная арматура (задвижки или шаровые краны, расположенные со стороны ввода ХВС и внутридомовой системы водоснабжения);
  2. Водосчетчик (как правило, механический);
  3. Грязевик (бак со сливным краном, в котором, благодаря медленному движению воды через его объем, оседают песок, крупные частицы ржавчины и прочий мусор). Нередко вместо грязевика водомерный узел комплектуется фильтром грубой очистки, в котором за очистку воды от мусора отвечает нержавеющая сетка;
  4. Манометр или контрольный вентиль для его установки;
  5. Опционально водомер может комплектоваться обводной линией с собственной задвижкой или шаровым краном на ней. Обводная открывается при демонтаже водосчетчика на время ремонта или поверки. В прочее время она закрыта и опломбирована представителем организации — поставщика воды.

Водомерный узел с обводной линией

Любопытно: «Водосеть», или заменяющая ее организация, отвечает за состояние ввода ХВС вплоть до первого фланца входной задвижки. Водомер — зона ответственности обслуживающей дом организации.

Элеваторный узел

Элеваторный узел, или тепловой пункт тоже совмещает целый ряд функций:

  • Отвечает за работу и регулировку системы отопления;
  • Обеспечивает дом горячей водой. Вода (она же — теплоноситель системы отопления) подается во внутридомовую систему ГВС непосредственно из теплотрассы;
  • Позволяет при необходимости переключать ГВС между подающей и обратной нитками теплотрассы. Переключение необходимо, поскольку зимой температура подачи может достигать внушительных 150°С, а допустимый максимум температуры горячей воды — всего 75°С.

Схема элеваторного узла с врезками ГВС

Короткая лекция по физике: вода нагревается выше точки кипения, не испаряясь, благодаря избыточному давлению в теплотрассе. Чем выше давление — тем выше температура кипения жидкостей.

Сердце элеваторного узла — водоструйный элеватор, через сопло которого горячая и имеющая более высокое давление вода с подачи впрыскивается в заполненную водой с обратки камеру смешения. Благодаря работе элеватора, через систему отопления дома проходит большой объем воды со сравнительно низкой температурой; при этом расход воды с подачи сравнительно невелик.

Принцип работы водоструйного элеватора

Врезки ГВС располагаются между входными задвижками и элеватором. Этих врезок может быть две (по одной на подаче и обратке) и четыре (по две на каждой нитке). Первая схема типична для домов постройки 70-х годов прошлого века и более старых зданий, вторая — для мало-мальски современных построек.

Зачем нужны дополнительные врезки?

Чтобы ответить на этот вопрос, нам нужно забежать вперед и изучить схемы водоснабжения в многоквартирных домах.

На холодной воде всегда используется тупиковая схема: водомер переходит в единственный розлив, тот — в стояки, которые заканчиваются внутриквартирными подводками. Вода движется в таком контуре водоснабжения только при водоразборе.

А что творится на ГВС?

В домах с двумя врезками ГВС в элеваторный узел используется та же схема.

Схема элеваторного узла с тупиковой разводкой горячей воды

Однако у нее есть два довольно раздражающих недостатка:

  1. Если водоразбора по вашему стояку долгое время не было, воду приходится подолгу сливать прежде, чем она нагреется;

Заметьте: если на ваших подводках стоят механические счетчики, то они будут регистрировать расход воды, игнорируя ее температуру.  В результате вы станете ежемесячно переплачивать сотню-другую рублей за услугу, которой фактически не пользовались.

  1. Установленные на подводках ГВС сушилки для полотенец, отвечающие заодно за отопление санузла, будут нагреваться только при разборе горячей воды в вашей квартире. И, соответственно, большую часть времени останутся холодными. Отсюда — холод и сырость в ванных комнатах, нередко становящиеся причиной появления грибка.

В старых домах полотенцесушитель нагревается только при разборе горячей воды

Элеваторный узел с четырьмя врезками ГВС обеспечивает непрерывную циркуляцию горячей воды через два розлива и соединенные перемычками стояки.

Работа ГВС возможна по одной из трех схем:

  1. Из подающего в обратный трубопровод. Такая схема горячего водоснабжения многоэтажного дома используется только летом, когда отопление отключено: байпас между нитками теплотрассы снизил бы перепад давлений на элеваторе;
  2. Из подачи в подачу. Эта схема — для осени и весны с их сравнительно невысокой температурой подачи;
  3. Из обратки в обратку. Так ГВС включается на время холодов, когда температура подачи превышает пороговые 75 градусов.

Минимальная и максимальная температуры ГВС регламентируются действующими СНиП

У читателей, не забывших основы физики, возникнет резонный вопрос: как обеспечивается перепад давлений, необходимый для непрерывной циркуляции между двумя врезками в одну нитку?

Вспомните: вода непрерывно движется через трубы между входными задвижками и элеватором. Чтобы создать перепад давлений, нужно лишь ограничить поток, установленным между врезками препятствием. Эту роль выполняет подпорная шайба — металлический блин с отверстием в нем.

Капитан Очевидность подсказывает: значительное ограничение проходимости любого трубопровода помешало бы работе элеваторного узла, поэтому диаметр подпорных шайб на миллиметр больше диаметра сопла элеватора. Тот, в свою очередь, рассчитывается организацией  (поставщиком тепла) таким образом, чтобы температура обратки на выходе из теплового пункта соответствовала температурному графику.

Подпорные шайбы не должны ограничивать расход воды через сопло элеватора

Розливы

Розливами водоснабжения называют горизонтальные трубы, проходящие по подвалу или подполу дома, и соединяющие стояки с элеваторным и водомерным узлами. Розлив ХВС всегда один, розлива ГВС в циркуляционной системе горячего водоснабжения два.

Диаметр розлива в зависимости от его материала и количества потребителей воды варьируется от 32 до 100 миллиметров. Последнее значение явно избыточно; однако проект водоснабжения многоквартирного дома должен был учитывать не только текущее состояние трубопроводов, но и их неизбежное зарастание отложениями и ржавчиной. Через 20-25 лет эксплуатации просвет трубы на холодной воде снижается в 2-3 раза.

Розливы водоснабжения в подвале многоквартирного дома

Каждый стояк отвечает за вертикальную разводку воды в расположенных друг над другом квартирах.

Наиболее типичная схема — одна группа стояков (ХВС и ГВС, опционально — полотенцесушители) на одну квартиру; однако возможны и другие варианты:

  • Через квартиру может проходить две группы стояков, снабжающие водой разнесенные на большое расстояние санузел и кухню;
  • Стояки в одной квартире могут снабжать водой не только ее жильцов, но и соседей за стенкой;
  • На ГВС циркуляционными перемычками может объединяться до 7 стояков из нескольких квартир.

Типичный диаметр стояков ХВС и ГВС — 25-40 мм. Диаметр стояков полотенцесушителей и холостых (без сантехнических приборов) циркуляционных стояков обычно меньше: они монтируются трубой ДУ20.

Стояки водоснабжения в санузле квартиры

В циркуляционной схеме горячего водоснабжения перемычки между стояками могут располагаться в квартире верхнего этажа или выноситься на чердак. Перемычки оборудуются воздушниками (кранами Маевского или обычными кранами), позволяющими стравить препятствующий циркуляции воздух.

Подводки

Их функция — разводка воды по сантехническим приборам внутри квартиры. Что полезно знать о подводках водоснабжения?

  • Их типичный размер (для стальных водогазопроводных труб) — ДУ15 (что примерно соответствует внутреннему диаметру в 15 мм). При замене подводок своими руками, желательно не уменьшать их внутренний диаметр — это приведет к падению напора на всех сантехнических приборах при разборе воды на одном из них;

Разумный минимум внешнего диаметра пластиковых и металлопластиковых подводок — 20 мм

  • Еще с советских времен в квартирах традиционно используется простая и дешевая последовательная (тройниковая) разводка. Более материалоемкая коллекторная требует, среди прочего, скрытого монтажа подводок, который сильно затрудняет их дальнейшее обслуживание;

Тройниковая разводка воды по сантехническим приборам

  • Со временем пропускная способность стальных подводок заметно падает, из-за пресловутого зарастания отложениями. В таких случаях трубы прочищают тонкой стальной струной или, просто-напросто, меняют на новые.

Состояние черной стальной трубы после двух десятилетий эксплуатации на водоснабжении

Если вы решите заменить подводки, настоятельно советуем остановить свой выбор на металлических трубах. Инструкция связана с достаточно высокой вероятностью гидроударов и отклонений от штатной температуры в системе ГВС: например, если забывчивый слесарь не переключит водоснабжение с подачи на обратку при первых заморозках, температура воды может значительно превысить максимальные для любых полимерных труб 90-95 градусов.

Какие именно трубы можно использовать на водоснабжении:

Изображение Описание

Разводка воды оцинкованной стальной трубой

Оцинкованные стальные трубы применяются для разводки водоснабжения со времен сталинок. В отличие от черной стали, оцинковка не боится отложений и ржавчины. Важный момент: оцинковка монтируется только на резьбовых соединениях, поскольку при сварке цинк в области шва полностью испаряется.

Медные подводки на фитингах под пайку

Медные трубы давно доказали свою надежность и долговечность: самым старым действующим медным водопроводам больше века, и они находятся в прекрасном состоянии. Паяные соединения медных труб — необслуживаемые, и могут монтироваться скрыто, в стяжке или штробах.

Гофрированные нержавеющие подводки водоснабжения

Гофрированные трубы из нержавеющей стали выгодно отличаются от конкурентов предельно простым монтажом. Для их соединения используются компрессионные фитинги, для сборки которых нужны лишь два разводных ключа. Срок службы самих труб характеризуется производителями как неограниченный; однако через 30 лет вам или, что вероятнее, вашим детям придется поменять уплотнительные силиконовые кольца в фитингах.

Неисправности

Какие нарушения в работе системы водоснабжения владелец квартиры может устранить самостоятельно? Вот несколько наиболее типичных ситуаций.

Течь вентилей

Описание: течь по штоку винтовых вентилей.

Типичное место течи показано стрелкой

  • Причина: частичная выработка сальника или износ резинового уплотнительного кольца.
  • Решение: открыть барашек вентиля до упора. При этом резьба на штоке подожмет снизу сальник, и течь прекратится.
Шум кранов

Описание: при открытии крана горячей или (реже) холодной воды слышен сильный шум и ощущается вибрация смесителя. Как вариант, источником шума может быть кран у ваших соседей.

Шумящий у соседей кран может стать источником массы отрицательных эмоций

Причина: деформировавшаяся и раздавленная прокладка на винтовой кранбуксе в полуоткрытом положении становится причиной непрерывной серии гидроударов. Ее клапан с периодичностью в доли секунды перекрывает седло в корпусе смесителя. На горячей воде давление, как правило, заметно больше, поэтому на ней эффект более выражен.

Решение:

  1. Перекройте воду на квартиру;
  2. Выверните проблемную кранбуксу;
  3. Замените прокладку на новую;
  4. Снимите ножницами фаску у новой прокладки. Снятая фаска исключит биение клапана в турбулентной струе воды в дальнейшем.

Замена прокладки на винтовой кранбуксе

Кстати: керамические кранбуксы полностью совместимы с винтовыми по резьбе, и лишены описанной проблемы.

На фото керамическая кранбукса

Холодный полотенцесушитель
  • Описание: полотенцесушитель в вашей ванной комнате остыл и не нагревается.
  • Причина: если схема водоснабжения жилого многоквартирного дома использует непрерывную циркуляцию горячей воды, виноват воздух, оставшийся в перемычке между стояками после сброса воды (например, для ревизии и ремонта запорной арматуры).
  • Решение: поднимитесь на верхний этаж и попросите ваших соседей стравить воздух из перемычки между стояками ГВС и полотенцесушителей.

Если это по какой-то причине это сделать невозможно, проблема может быть решена из подвала:

  1. Перекройте проходящий через вашу квартиру стояк ГВС, к которому подключены ваши подводки;
  2. Поднимитесь в квартиру и откройте до отказа краны горячей воды;
  3. После того, как через них из стояка выйдет весь воздух, закройте краны и откройте кран на стояке.

Если на стояке установлен сбросник, его можно перепустить прямо из подвала

Нюанс: сразу после окончания отопительного сезона между нитками теплотрассы может отсутствовать перепад давлений. В этом случае полотенцесушители будут холодными даже при отсутствии воздушных пробок в стояках.

Сразу после окончания отопительного сезона перепад между нитками трассы может быть нулевым

Заключение

Надеемся, что наш материал помог вам изучить водоснабжение многоквартирного дома: схема подачи воды, описанная нами, является наиболее распространенной. Успехов!

moikolodets.ru

Теплообменники для горячей воды от отопления

Теплообменник для ГВС позволяет получать горячую воду прямо от отопительной системы. Этот прибор может обеспечивать вас большими объемами воды без дополнительного оборудования и расходов энергии. Пластинчатые теплообменники используются в многоквартирных и частных жилых домах, общественных зданиях и на производственных точках.

Пластинчатые теплообменники (ПТО) — это устройства, предназначенные для быстрого обмена теплом между двумя средами. Главная особенность этих приборов заключается в том, что они позволяют двум средам обмениваться теплом, не смешиваясь друг с другом. Поэтому ПТО идеально подходят для организации горячего водоснабжения с использованием энергии теплоносителя.

Пластинчатый теплообменник состоит из нескольких пластин, заключенных в общий корпус. Пластины находятся параллельно друг другу — так, чтобы между ними образовались каналы, по которым будут течь жидкие среды. Благодаря большой площади теплообмена, вода быстро нагревается, не смешиваясь при этом с теплоносителем.

Принцип работы теплообменника для горячей воды от отопления очень прост. Прибор подключается к контуру отопительной системы (последовательно или параллельно), чтобы по нему циркулировал теплоноситель. Вход вторичного контура теплообменника подключается к водопроводной трубе холодного водоснабжения — после прохождения через устройство вода нагревается и поступает непосредственно к кранам.

Двухступенчатая и параллельная схема подключения теплообменника

Теплообменные аппараты можно использовать:

  • в котельных;
  • в системах центрального отопления;
  • в местных отопительных системах;
  • в автономных системах отопления.

Использование теплообменных приборов для получения горячей воды имеет несколько весомых преимуществ:

  • Высокая производительность — если нужно подавать воду одновременно в несколько точек, прибор прекрасно справится с этой задачей.
  • Экономия — вам не нужны дополнительные источники энергии. А значит, в отличие от бойлеров и проточных нагревателей, такое устройство не расходует газ и электроэнергию.
  • Компактные размеры — теплообменник не занимает много места.
  • Простота монтажа и обслуживания — устройство легко подключается, а на профилактическую чистку и разборку уйдет всего несколько часов.

К недостаткам можно отнести необходимость чистки — прибор придется периодически очищать от накипи. Иногда для этого требуется разборка и механическая чистка, иногда — достаточно промывки специальным составом.

Чтобы прибор работал эффективно, нужно правильно подобрать его параметры: материал изготовления, число пластин, площадь теплообмена, диаметр соединения и т.д. А эти параметры, в свою очередь, зависят от условий эксплуатации. Поэтому для каждой системы пластинчатый теплообменник для горячей воды от отопления подбирается индивидуально — такой подбор называется расчетом теплообменника.

При расчете учитывается:

  • Тепловая нагрузка;
  • Предполагаемый суточный расход на одного потребителя;
  • Количество потребителей;
  • Количество точек водозабора;
  • Типы рабочих сред (вода, масло или пар).
  • Температура теплоносителя на входе и на выходе;
  • Температура воды на входе в теплообменник и желаемая температура горячей воды на выходе из него.

На основе всех этих параметров производятся расчеты, определяющие размеры и количество пластин, тип стали и другие характеристики. При этом важна не только точность расчетов, но и компетенция специалистов, которые должны проанализировать полученные данные и подобрать оптимальный вариант для заданных условий.

Бесплатный расчет стоимости теплообменника

Ошибки при расчетах могут привести к преждевременной поломке прибора, протечкам, быстрому загрязнению, чрезмерному расходу энергии и другим проблемам. Поэтому расчет должен производиться специалистами-теплотехниками.

Важно! Обращаем Ваше внимание, что данные расчеты сделаны для конкретных объектов с их теплофизическими свойствами и расчетными температурами!

Стоимость, представленная на сайте, является ознакомительной!

Точная и детальная информация определяется после теплотехнического расчета, в ходе которого будет определены: размер рамы, материалы пластин и уплотнений, их количество, толщины, компоновки.

Теплообменник Объект Цена
Аппарат теплообменный пластинчатый Ридан НН№14А-21-TMTL40 (Ду 50 мм)

Скачать пример расчета

Объект: 5 этажный жилой дом Температурные графики: Гор. сторона: 70/40 °С Холод. стор: 5/60 °С Кол-во квартир: 80 Кол-во людей: 140 118 867 руб с НДС На этот товар

возможны скидки!

Аппарат теплообменный пластинчатый Ридан НН№14А-17-TKTM62 (Ду 50 мм)

Скачать пример расчета

Объект: Детский сад Температурные графики: Гор. сторона: 75/50 °С Холод. стор: 5/60 °С Кол-во людей: 280 103 536 руб с НДС На этот товар

возможны скидки!

В компании «ТеплоПрофи» вы можете бесплатно заказать профессиональный расчет и узнать примерную цену прибора — просто напишите нам или заполните заявку на сайте.

Заказанный теплообменный аппарат будет бесплатно доставлен до терминала выдачи . Вы получите груз в указанное время. Все грузы застрахованы. За все время нами осуществлено более 4000 отправок по России. Вы получаете технику, которая адаптирована к российским условиям и имеет все нужные сертификаты. Гарантия производителя, максимально низкие цены, возможность сервисного обслуживания у партнеров. Пластинчатый теплообменник производится в России в заводских условиях с соблюдением всех технологических процессов, на современном оборудовании. Качественные материалы подвергаются многочисленным испытаниям.

Профессиональный подбор оборудования

Все наши инженеры прошли подготовку по программам обучения Ридан. Имеют высшее техническое образование. Все ваши потребности будут учтены при подборе пластинчатого теплообменника.

Заполните опросный лист в электронном виде на сайте и наш специалист свяжется с вами в течение 1 минуты!

Скачайте печатную форму опросного листа, заполните и направьте его в по электронной почте [email protected]

www.teploprofi.com

Теплообменник для горячей воды от отопления

Главная » Отопление » Теплообменник для горячей воды от отопления

Трудно представить современный дом или квартиру без горячего водоснабжения. Правда, цена вопроса сильно зависит от способа нагрева воды.

Часто применяют непосредственный нагрев: газовую колонку, проточный электронагреватель, бойлер. Хотя это не самый эффективный вариант. Намного экономичнее, проще и надежнее теплообменник для горячей воды от отопления.

При наличии источника тепла, в виде автономного или центрального отопления, энергию для подогрева воды можно получить оттуда, не тратясь на дорогостоящее электричество или газ.

Устройство и принцип работы

Теплообменник передает тепло от горячего теплоносителя холодному, при этом не происходит их перемешивание. В качестве теплоносителя используются вода, пар или масло. Для горячего водоснабжения источником тепла выступает теплоноситель системы отопления, а разогреваемой средой является холодная вода.

Конструктивно теплообменник состоит из группы гофрированных пластин, расположенных в параллельных плоскостях. Между ними идут каналы, по которым перемещается теплоноситель и нагреваемая жидкость, расположены они послойно и чередуются между собой. За счет такой конструкции возрастает площадь теплообмена.

Гофрирование выполняют в виде волн, которые ориентированы так, чтобы каналы соседних контуров располагались под углом друг к другу. Подключают входы и выходы по схеме, которая направляет жидкости навстречу одна другой.

Размер поверхности и материал пластин подбирают соответственно требуемой мощности теплообмена и вида теплоносителя. В современных высокоэффективных устройствах поверхность сформирована таким образом, что возбуждает завихрения у поверхности пластины, что увеличивает теплообмен, и не создает при этом заметного сопротивления потоку.

  • Не пропустите: Плюсы и минусы двухконтурного котла

Теплообменник включают в два контура:

  1. Последовательно в систему отопления или параллельно, при наличии регулирующих вентилей.
  2. Вход в холодный водопровод, а выход к потребителю ГВС.

Холодная вода протекает через теплообменник и нагревается от тепла системы отопления до нужной температуры, а затем попадает к потребителю.

Технические характеристики теплообменника

К основным характеристикам устройства можно отнести:

  • мощность (Вт);
  • предельная температура теплоносителя (°С);
  • производительность (л/час);
  • коэффициент гидросопротивления.

Мощность определяется площадью теплообмена, перепадом температур в двух контурах и числом пластин в теплообменнике.

Максимальная температура зависит от материала и способа соединения пластин.

Пропускную способность можно повысить, увеличив число пластин, так как их подключают фактически параллельно. То есть, каждая следующая пара пластин создает еще один канал для протока жидкости.

Как вы уже, наверное, догадались, большинство теплообменников разборные. Благодаря этому можно увеличивать и уменьшать число пластин и подбирать их тип и размеры. Производительность и мощность устройства должны быть достаточными для того, чтобы подогреть проточную холодную воду, но при этом в системе отопления не должна создаваться критическая ситуация.

Для стандартных случаев, таких как: обеспечение горячей водой дома, квартиры или частного хозяйства, продаются уже готовые теплообменники с фиксированными характеристиками.

Расчет теплообменника

Выбирают устройство по мощности и пропускной способности, но для более точного результата нужно знать и другие характеристики:

  • тип среды в обоих контурах;
  • температуру теплоносителя в системе отопления;
  • допустимое снижение температуры теплоносителя после теплообменника;
  • температуру холодной воды;
  • требуемую температуру ГВС;
  • максимальный расход горячей воды;
  • удельную теплоемкость жидкости в обоих контурах.

Что касается расхода горячей воды, то он составляет:

  • для раковин – 40 л/ч;
  • для ванны – 200 л/ч;
  • для душевой – 165 л/ч.

Если вы подсоедините посудомоечную и стиральную машины к ГВС, то расход для них возьмите из паспорта или инструкции. Собрав все данные, сам расчет поручите сделать специалисту, так будет надежнее.

Если при расчете выяснится, что мощности для нагрева требуемого количества горячей воды недостаточно, то можно сделать две ступени подогрева. На практике это выглядит как два теплообменника. В первой ступени выполняется предварительный нагрев, в ней как источник тепла используется обратка отопления, у которой пониженная температура. Во второй ступени вода нагревается окончательно, уже горячей водой, поступающей от котла или котельной.

ecoblog.pro

Теплообменник для отопления для горячей воды

Теплообменник для отопления выступает важнейшей составляющей любого котла. От его работоспособности зависит «жизнь» обогревательного агрегата. Давайте рассмотрим, какой теплообменник для системы отопления позволит обеспечить эффективное функционирование котла и продлить срок его службы.

Что представляют собой агрегаты данной категории?

Пластинчатый теплообменник для отопления – технически сложная система, с помощью которой происходит передача энергии между горячим и холодным теплоносителем. На практике для этого применяются жидкости и пары, реже – газы, твердые основы.

Другими словами, теплообменник для отопления – это устройство, которое не имеет собственного источника тепла, а его функциональность обеспечивается энергией, что поступает от централизованной системы обогрева. То есть котел или печка не относятся к агрегатам данной категории по определению. Однако лежанку либо щит, что отражают тепло дымовых газов от печки, можно считать примерами теплообменника, так как от них происходит нагрев воздуха в помещении.

Эффективность передачи энергии здесь зависит от следующего:

  • Температурных различий между средами (наличие существенной разницы вызывает более внушительную передачу энергии).
  • Площади соприкосновении отдельных сред с теплообменником.
  • Показателей теплопроводности материалов изготовления конструкции.

По сути, теплообменник для горячей воды от отопления может быть представлен любой трубой, которая используется для передачи той или иной рабочей среды, что обладает температурой, отличной от показателей окружающего пространства.

Типы

Одним из определяющих критериев при выборе теплообменника определенного плана выступает не только характер теплоносителя, но также его качества. Если в виде рабочей среды предполагается использование умягченной либо химически очищенной воды, предпочтение лучше отдавать пластинчатым конструкциям паяного типа. То же касается применения теплоносителей, которые не оставляют после себя никаких отложений на стенках конструкции, например спирт, фреон либо этиленгликоль.

Когда разговор заходит о масштабных тепловых пунктах, таких как котельные, здесь чаще всего можно увидеть теплообменник для горячей воды от отопления разборного типа. Применение подобных решений можно объяснить наличием низкокачественной рабочей среды, что используется в централизованных сетях обогрева.

Простота конструкции разборных пластинчатых агрегатов способствует их удобному обслуживанию, в частности быстрой разборке при необходимости удаления накипи из внутренних каналов. При этом замена деталей такого теплообменника, будь то фланцы либо задвижки, по силам даже неопытным мастерам.

Согласно способу передачи энергии, стоит выделить смесительный и поверхностный теплообменник для отопления. Первый функционирует согласно принципу распространения энергии при непосредственном контакте между отдельными носителями тепла. Второй тип передает энергию через пластины без непосредственного контакта рабочих сред.

Если необходимо использовать теплообменник для отопления в качестве элемента для подогрева воды в бассейне либо как охладитель в промышленных установках, применять в этих целях рекомендуется пластинчатые и паяные агрегаты. Подобные конструкции позволяют быстро достигать наиболее эффективного теплообмена между двумя жидкостями.

Материалы

Теплообменник для отопления дома может быть изготовлен из стальных либо чугунных пластин, соединенных методом пайки медным либо никелевым припоем. Конструкции, паяные медью, распространены в централизованных системах обогрева. В то же время системы, элементы которых соединены с использованием никеля, применяются в основном для обеспечения потребностей промышленных сфер и при необходимости работы с химически агрессивными средами.

Чугун

Отдавая предпочтение чугунным теплообменникам стоит обратить внимание на несколько моментов:

  1. Достаточно внушительный вес, что обязательно следует учитывать при разработке проекта по обустройству котельной. Что касается внедрения подобных конструкций в систему обогрева частного дома, то последние должны отличаться малым объемом секций, минимальным количеством дымовых каналов, которые применяются для перемещения продуктов сгорания.
  2. Чугунные агрегаты отличаются возможностью секционной транспортировки в разобранном виде, что становится удобным при монтаже и последующем обслуживании.
  3. Несмотря на увесистость, материал довольно хрупок. Поэтому при перевозке и установке стоит избегать механических воздействий на элементы конструкции. Еще одна опасность – термический шок. При резком помещении в не остывший агрегат внушительного объема холодной рабочей среды, стенки теплообменника могут дать трещину.
  4. Чугун поддается как влажной, так и сухой коррозии. Первая образуется в результате воздействия на материал кислотного конденсата. Вторая медленно покрывает поверхности конструкции в виде пленки из ржавчины по мере эксплуатации. Поскольку теплообменники для отопления частного дома из чугуна обладают толстыми стенками, указанные процессы могут растянуться на долгие годы.
  5. Подобные системы долго нагреваются, но крайне медленно остывают, что значительно снижает расход топлива и повышает эффективность обогрева помещений.

Сталь

Наличие стального «сердца» не приводит к существенному утяжелению системы. Поэтому водяной теплообменник для отопления, изготовленный из данного материала, часто применяют для обслуживания больших площадей.

Что касается удобства монтажа стальной конструкции, окончательная сборка, в отличие от чугунных агрегатов, происходит в заводских условиях. Цельный моноблок довольно сложно занести в тесное помещение. К тому же заводская сборка несколько осложняет ремонт и обслуживание системы.

Установленный стальной теплообменник в печь для отопления, который получил серьезные повреждения, практически невозможно вернуть обратно к жизни в домашних условиях. Приходится либо прибегать к полному демонтажу системы и отправке на ремонт в промышленный цех, или избавляться от конструкции, выполняя ее замену.

В то же время водяной теплообменник для отопления из стали не боится ни термического шока, ни существенных механических нагрузок. Материал отличается высоким показателем эластичности и поэтому отлично справляется с резкими температурными перепадами. Однако при длительном воздействии сильного холода или тепла на сварных швах могут образовываться мелкие трещины.

Если говорить о способности противостоять коррозии, стальной теплообменник подвержен лишь электрохимическим воздействиям. Особенно быстро при длительном контакте с агрессивными средами ржавчиной разъедаются тонкие стенки. При этом срок службы системы может планомерно снижаться на время от 5 до 15 лет. Исходя их этого, производители нередко покрывают внутренние стенки стальных теплообменников чугуном.

Системы из данного материала практически моментально разогреваются и так же быстро остывают. Несмотря на очевидное удобство при необходимости быстрого отопления помещений, подобное свойство имеет обратную, негативную сторону. Так, эффект усталости металла на отдельных участках конструкции может приводить к появлению мелких повреждений.

Как сделать расчет теплообменника?

Выполнение самостоятельных расчетов выступает одним из наиболее распространенных вопросов от потребителей. На самом деле, справиться с задачей чрезвычайно сложно, поскольку производители теплообменников стараются скрывать секреты собственных разработок от посторонних, в том числе от пользователей.

По вышеуказанной причине становится сложно выяснить реальный расход энергии при передаче тепла. Если данный показатель будет заведомо низким, соответственно, КПД теплообменника окажется недостаточным для удовлетворения существующих потребностей.

Чтобы увеличить производительность системы, нередко приходится устанавливать объемные агрегаты. Впрочем, чтобы снизить количество используемых пластин теплообменника, достаточно воспользоваться специальной расчетной программой, которая имеется у каждого серьезного производителя отопительной техники.

Теплообменники для отопления своими руками

Как собственноручно изготовить эффективную конструкцию, которая будет справляться с функциями теплообмена? Для этого достаточно вернуться к определению, которое характерно для устройств данной категории. Получается, что для сборки простого теплообменника достаточно взять металлическую трубу определенной длины, свернуть ее в кольцо и поместить в емкость, заполненную водой.

Благодаря выводу наружу выхода и входа трубы, можно получить функциональную конструкцию, которая будет либо нагревать, либо охлаждать рабочую жидкость, в зависимости от существующей потребности.

Теплообменник «водяная рубашка»

Помимо системы в виде змеевика, собственноручно можно изготовить теплообменник, известный как «водяная рубашка». Функционируют подобные системы на основе принципа распределения энергии между несколькими герметичными емкостями, помещенными друг в друга.

Теплообмен по данному принципу успешно применяется в малогабаритных котлах на твердом топливе. Несмотря на общую простоту конструкции, недостатком таких систем выступает наличие сравнительно невысокого эксплуатационного давления, на которое рассчитаны данные агрегаты. К тому же изготовлением теплообменников, функционирующих по принципу «водяной рубашки», должен заниматься опытный сварщик. Сконструировать и собрать такую систему из подручных материалов, не имея соответствующих навыков, довольно проблематично.

Теплообменник «трубная доска»

Наверное, наиболее сложным из всех вариантов, доступных для самостоятельного изготовления, выступает система, которую называют «трубная доска». Данное определение закрепилось за самодельными теплообменниками, что содержат основательное количество вальцовочных трубных соединений.

Подобные агрегаты представлены в виде трех герметичных емкостей. Две из них размещаются на противоположных краях конструкции и соединяются металлическими проводниками рабочей среды, что развальцовываются в торцах таких сосудов. Теплообмен выполняется в третьей – средней – части благодаря перемещению жидкой рабочей среды между емкостями по трубам.

В поиске альтернативных решений

Если нет возможностей для самостоятельной сборки теплообменника вышеуказанными способами, можно попытаться отыскать материалы для изготовления будущей системы в собственном чулане либо на свалке. Например, отличным решением для создания устройства в виде змеевика станет старый полотенцесушитель. Подойдет также любой бытовой радиатор, который не имеет протечек.

Что касается применения радиаторов из автомобильных печек, по сути, их можно сразу же использовать в качестве обогревательного элемента, объединив отдельные агрегаты переходниками для увеличения площади обмена тепловой энергией.

Эффективное устройство можно создать на основе старой водонагревательной колонки. В данном случае даже не придется практически ничего переделывать.

В итоге

Как видно, принцип функционирования теплообменников везде примерно одинаков. В зависимости от условий эксплуатации работать такие агрегаты могут как на нагревание, так и на охлаждение рабочей среды: газа, жидкости или твердого вещества.

При выборе заводского решения многое зависит от задач, которые возложены на теплообменник, а в случае самостоятельной сборки – от инженерной фантазии мастера.

fb.ru

Пластинчатый теплообменник для горячего водоснабжения

Обеспечить себе в доме или квартире горячее водоснабжение можно многими способами и непосредственный нагрев, например прямоточным электронагревателем или бойлером – не самый эффективный способ. В простоте и надежности отлично зарекомендовал себя пластинчатый теплообменник ГВС. Если есть источник тепла, например автономное отопление или даже централизованное, то тепло для нагрева воды вполне разумно взять от них, не тратя дорогостоящее электричество для этих целей.

Устройство и принцип работы

Пластинчатый теплообменник (ПТО) обеспечивает переход тепла от нагретого теплоносителя холодному, при этом не перемешивая их, развязывая два контура между собой. Теплоносителем может быть пар, вода или масло. В случае с горячим водоснабжением чаще источником тепла является теплоноситель системы отопления, а нагреваемой средой – холодная вода.

Конструктивно теплообменник представляет собой группу гофрированных пластин, собранных параллельно друг другу. Между ними образуются каналы, по которым течет теплоноситель и нагреваемая среда, притом послойно они чередуются между собой, не перемешиваясь при этом. За счет чередования слоев, по которым текут жидкости обоих контуров, увеличивается площадь теплообмена.

Схема работы теплообменника

Гофрирование чаше выполняется в виде волн, притом ориентированных так, чтобы каналы одного контура располагались под углом к каналам второго контура.

Подключение входов и выходов делаются так, чтобы жидкости текли навстречу друг другу.

Поверхность и материал пластин подбирается исходя из требуемой мощности теплообмена, вида теплоносителя. В особенно эффективных и продуманных теплообменниках поверхность формуется для возбуждения завихрений возле поверхности пластины, повышая теплообмен, не создавая сильного сопротивления общему току.

Теплообменник включается между двумя контурами:

  1. Последовательно к системе отопления или параллельно с наличием регулирующей арматуры.
  2. К входу от холодного водопровода и выходом к потребителю ГВС.

Холодная вода, протекая через теплообменник нагревается за счет тепла от системы отопления до требуемой температуры и подается на кран потребителя.

Основные характеристики пластинчатого теплообменника:

  • Мощность, Вт;
  • Максимальная температура теплоносителя, оС;
  • Пропускная способность, производительность, литры/час;
  • Коэффициент гидравлического сопротивления.

Мощность зависит от общей площади теплообмена, перепада температур в обоих контурах между входов и выходом и даже от числа пластин.

Максимальная температура задается подбором материалов и способом соединения пластин и корпуса теплообменника.

Пропускная способность повышается с увеличением числа пластин, так как они подключаются фактически параллельно, то каждая новая пара пластин добавляет дополнительный канал для тока жидкости.

Коэффициент гидравлического сопротивления важен при расчете нагрузки на систему отопления, где от этого зависит выбор циркуляционного насоса, немаловажен и для других источников тепла. Зависит от типа гофрирования пластин и размера сечения каналов и их количества.

Именно по этим параметрам подбирается в итоге теплообменник для конкретной ситуации. Чаще всего пластинчатые теплообменники имеют разборную конструкцию, в которой можно наращивать или уменьшать число пластин и выбирать их тип и размер. Мощность и производительность теплообменника должно хватать для того, чтобы нагреть проточную холодную воду, и при этом не создать критической нагрузки на систему отопления.

Для наиболее востребованных случаев, каким является обеспечение горячей водой частного хозяйства, дома или квартиры производятся готовые теплообменники с постоянными характеристиками.

Расчет

Выбор подходящего теплообменника сложно выполнить, оперируя только одной лишь его мощностью или пропускной способностью. Эффективность подготовки ГВС зависит и от состояния теплоносителя в первом контуре и во втором, от материала и конструкции теплообменника, скорости и массовой части теплоносителя, проходящего в единицу времени через пластинчатый теплообменник. Однако, естественно следует предварительно выполнить расчет, позволяющий прийти к определенному сочетанию мощности и производительности для выбора подходящей модели.

Базовые данные необходимые для расчета:

  • Тип среды в обоих контурах (вода-вода, масло-вода, пар-вода)
  • Температура теплоносителя в системы отопления;
  • Максимально допустимое снижение температуры теплоносителя после прохождения теплообменника;
  • Начальная температура воды, используемой для ГВС;
  • Требуема температура ГВС;
  • Целевой расход горячей воды в режиме максимального потребления.

Кроме этого в формулах для расчета задействована удельная теплоемкость жидкости в обоих контурах. Для ГВС используется табличное значение для начальной температуры воды, чаще +20оС, равное 4,182 кДж/кг*К. Для теплоносителя следует отдельно находить значение удельной теплоемкости, если в его составе имеется антифриз или другие присадки для улучшения его качеств. Аналогично для централизованного отопления берется приблизительное значение или фактическое на основании данных теплокоммунэнерго.

Целевой расход определяется количеством пользователей для горячей воды и количеством устройств (краны, посудомоечная и стиральная машинка, душ), где она будет использована. Согласно требованиям СНиП 2.04.01-85 необходимы следующие значения расхода горячей воды:

  • для раковины – 40 л/ч;
  • ванная – 200 л/ч;
  • душевая – 165 л/ч.

Значение для раковины умножается на количество устройств в доме, которые могут использоваться параллельно, и складывается со значением для ванны или душевой в зависимости от того, что именно используется. Для посудомоечной и стиральной машинки значения берутся из паспорта и инструкции и только при условии, что они поддерживают использование горячей воды.

Второе базовое значение – это мощности теплообменника. Рассчитывается исходя из полученного значения расхода жидкости и разницы температур воды на входе в теплообменник и на выходе.

P = m * С *Δt,

где m – расход воды, С – удельная теплоемкость, Δt – разница температур воды на входе и выходе ПТО.

Для получения массового расхода воды следует расход, выраженный в л/ч умножить на плотность воды 1000 кг/м3.

КПД теплообменников оценивается на уровне 80-85%, и многое зависит от конструкции самого оборудования, так что полученное значение следует разделить на 0,8(5).

С другой стороны ограничением по мощности будет расчет, выполненный со стороны первого контура с теплоносителем, где, используя уже разницу допустимых температур для системы отопления, получаем максимально допустимый забор мощности. Конечный результат будет компромиссом между двумя полученными значениями.

Если забора мощности для нагрева нужного количества горячей воды не хватает, то разумнее использовать две ступени подогрева и, соответственно, два теплообменника. Мощность распределяется между ними поровну от требуемого расчета. Одна ступень выполняет предварительный нагрев, используя в качестве источника тепла обратку отопления с пониженной температурой. Второй ПТО уже нагревает окончательно воду за счет горячей воды с подачи отопления.

Схема обвязки

Подключают теплообменник к системе отопления несколькими способами. Самый простой вариант с параллельным включением и наличием регулировочного клапана, работающего от термоголовки.

Обязательными являются запорные шаровые вентили на всех выводах теплообменника, чтобы иметь возможность полностью перекрыть доступ жидкости и обеспечить условия для демонтажа оборудования. Регулировкой мощности и, соответственно, нагревом горячей воды должен заниматься клапан с управлением от термоголовки. Клапан устанавливается на подводящую трубу от отопления, а датчик температуры на выход контура ГВС.

При цикличной организации ГВС с наличием накопительной емкости устанавливается дополнительно тройник на входе нагреваемого контура для включения холодной водопроводной воды и обратки по ГВС. Избежать ненужного тока в обратном направлении в ветке горячей и холодной воды не даст обратный клапан.

Недостатком этой схемы является сильно завышенная нагрузка на систему отопления и неэффективный нагрев воды во втором контуре при большем перепаде температур.

Гораздо продуктивнее и надежнее работает схема с двумя теплообменниками, двухступенчатая.

1 – пластинчатый теплообменник; 2 – регулятор температуры прямого действия: 2.1 – клапан; 2.2 – термостатический элемент; 3 – циркуляционный насос ГВС; 4 – счетчик горячей воды; 5 – электро-контактный манометр (защита от «сухого хода»)

Идея заключается в использовании двух теплообменников. В первой ступени используется с одной стороны обратка системы отопления, а с другой холодная вода из водопровода. Это дает предварительный нагрев примерно на 1/3 или половину от необходимой температуры, при этом не страдает обогрев дома. Включение контура выполняется последовательно с байпасом, на котором уже закреплен игловой вентиль, с помощью которого регулируется объем теплоносителя.

Второй ПТО, вторая ступень, подключаемая параллельно системе отопления – это с одной стороны подача горячего теплоносителя от котла или котельной, а с другой уже подогретая на первой ступени вода ГВС.

Регулировкой первой ступени заниматься нет нужды. Устанавливаются лишь шаровые вентили на все четыре отвода и обратный клапан на подачу холодной воды.

Обвязка второй ступени идентичная параллельному подключению за исключением того, что вместо холодной воды подключается уже подогретая вода с первой ступени.

udobnovdome.ru

Что такое теплообменник для горячей воды, их виды и использование

Эффективный теплообменник для горячей воды от отопления позволяет существенно расширить возможности оборудования, работающего на обогрев помещений. Этот элемент выступает одним из основных агрегатов любого типа котла. Чем продуктивнее он работает, тем дольше и качественнее сумеет прослужить обогревательное оборудование.

Теплообменники, предназначенные для отопления в доме, бане, являются довольно сложными с технической точки зрения система. С их помощью осуществляется передача энергии между двумя теплоносителями — холодным и горячим. Чаще всего используют пар и жидкость, а несколько реже — газ.

Если говорить проще, то теплообменник для отопления представляет собой устройство без собственного теплового источника. Работа осуществляется за счет использования энергии, идущей от вашей системы отопления внутри дома, бане, на предприятии. Потому печка, котел — это не теплообменники. А вот отражатель тепла газов дыма — да, поскольку за счет него осуществляется дополнительный обогрев помещения.

На эффективность передачи тепловой энергии влияет несколько факторов:

  • Разница температуры между двумя средами. Если разница будет большой, тогда эффективность будет выше;
  • Площадь контакта сред и теплообменника;
  • Теплопроводность используемых в конструкции материалов, принимающих непосредственное участие в процессе теплообмена.

Отсюда можно сделать вывод, что теплообменником от отопления для подачи горячей воды может служить любая труба, которая будет передавать тепло от источника с температурой, отличающейся от температуры помещения.

Что использовать

В зависимости от тех или иных критериев, показателей, следует выбирать определенный тип теплообменника.

  1. Если рабочей средой является смягченная или очищенная вода, тогда лучше использовать пластинчатые теплообменники.
  2. Аналогичный вид теплообменника подходит для теплоносителей, которые не оставляют на стенках системы отложения. Это спирт, этилен и пр.
  3. Разборные теплообменники чаще всего встречаются в крупных пунктах подачи тепла — в комплексной бане, котельне. Обусловлено это тем, что в котельнях качество используемого теплоносителя, то есть воды, оставляет желать лучшего.
  4. Разборные теплообменные устройства для воды и системы отопления хороши тем, что их легко обслуживать, разбирать, удалять накипь из внутренних конструкций. При этом выполнить ремонт или замену отдельных элементов разборного или пластинчатого типа по силам даже новичках.
  5. Паяные и пластинчатые теплообменники служат для ситуаций, когда нужен агрегат для отопления и подогрева воды в бане, бассейне. Плюс они отлично зарекомендовали себя как охладители промышленного оборудования.
Используемые материалы

Теплообменники, применяемые для горячего водоснабжения и работающие от системы отопления, могут выполняться из двух типов материалов:

Речь идет о пластинах, выполненных из данных материалов. Соединяются пластины между собой никелем или медью по средствам припайки и пайки соответственно.

Системы отопления с медной пайкой широко распространены в системах, отвечающих за централизованное отопление домов. А никелевый припой характерен для систем отопления, работающих на потребности промышленной сферы и при работе с химически агрессивными теплоносителями.

Теперь поговорим об особенностях пластин.

Чугун

Выбирая для подогрева воды дома, в бане от отопления чугунные теплообменники, важно детально изучить их основные особенности.

  1. Они обладают большим весом, что следует принимать во внимание при разработке проекта системы отопления и водоснабжения котельной.
  2. Чугунные устройства можно транспортировать по секциям, что существенно упрощает процесс доставки оборудования, его сборку и обслуживание.
  3. При внушительном весе, чугунные теплообменники достаточно хрупкие. Потому при транспортировке важно избегать механических повреждений.
  4. Чугунные теплообменники для отопления и водоснабжения боятся термического шока. Это говорит о том, что стенки агрегата могут деформироваться, если внутрь горячего теплообменника резко подать большое количество холодной среды.
  5. Для чугуна характерна влажная, сухая коррозия.
  6. Основное преимущество заключается в медленном остывании, хотя нагрев также осуществляется медленно. Это способствует заметной экономии на работе системы отопления и дальнейшего водоснабжения.

Сталь

Далее поговорим про стальные теплообменники, которые могут служить для подачи горячей воды через систему отопления.

  1. Сталь не делает конструкцию очень тяжелой, потому система не пострадает. Это оптимальное решение для ситуаций, когда требуется теплообменник для подачи горячей воды, обслуживающий большую площадь.
  2. Финишная сборка устройств стального типа осуществляется в заводских условиях. Они представляют собой моноблоки достаточно внушительных габаритов, что усложняет их доставку на место через узкие проемы.
  3. Самостоятельно вернуть теплообменник из стали к жизни в случае повреждения практически невозможно, потому можно либо заменить агрегат полностью, либо демонтировать и отправить на ремонт в цех.
  4. Для стальных теплообменников не страшен термический шок, механические нагрузки. Материал достаточно эластичен. Но все же длительное нахождение под воздействием чрезмерного тепла или холода может привести к появлению небольших трещин в местах сварных швов.
  5. С точки зрения коррозии, для стального теплообменника опасность представляет только электрохимический ее тип. При постоянном воздействии агрессивной среды, может существенно сокращаться срок службы агрегата.
  6. Из-за основных недостатков стали для теплообменника, часто внутренние стенки покрываются чугуном, делая тем самым конструкции максимально надежными, эффективными.
  7. При прохождении тепла через теплообменник стального типа, система быстро нагревается, но быстро и остывает. Отсюда большие затраты на топливо.

Нюансы расчета теплообменника

Итоговая цена системы может составлять от 200 долларов до 2000 у.е., а то и больше. Здесь главное рассчитать необходимые показатели теплообменника, чтобы определить оптимальные характеристики оборудования, подходящего для ваших целей.

Но на практике выполнить эту задачу самостоятельно сложно. Все потому, что производители тщательно скрывают секреты своих разработок от посторонних лиц. Это приводит к необходимости обращаться напрямую к производителям, поставщикам.

Они, используя специальные расчетные программы, выполняют соответствующие подсчеты для конкретно вашей ситуации. Предварительно выполняется оценка ситуации, проверяется текущее состояние объекта. Плюс производитель обязательно интересуется целями, которые вы преследуете, и финансовыми возможностями. На основе всей собранной информации выполняется грамотный расчет.

Чтобы вы не переплатили за систему водоснабжения и отопления, рекомендуем обращаться к проверенным фирмам, которые зарекомендовали себя с положительной стороны, имеют хорошую репутацию на рынке.

Рейтинг статьи - рейтинг материала: 4,00 из 5 Loading...

etapech.ru

Теплообменник для горячей воды от отопления: для чего он нужен в частном доме и как осуществить его подбор и расчет своими руками

Теплообменник для горячей воды от отопления — самый экономичный вариант организации горячего водоснабжения частного дома.

Теплообменник увеличивает эффективность отопления, обеспечивает бесперебойное снабжение дома горячей водой — и все это делается одновременно.

Что это такое

Что такое теплообменник для горячего водоснабжения — это устройство, в котором производится обмен тепловой энергией между двумя раздельными средами. Говоря проще, горячая вода, находящаяся в одной емкости, нагревает холодную воду, находящуюся в другой, причем, между собой эти емкости не сообщаются. Простым примером прибора можно назвать трубу с холодной водой, которая помещена в трубу большего диаметра с горячей водой.

Вода в меньшей трубе начнет нагреваться, стремясь уравнять температуру с внешней средой. Теплообменник для ГВС принцип работы его не меняется при любом типе устройства.

Для поддержания процесса в стабильном режиме обе жидкости движутся (циркулируют) с определенной скоростью, что позволяет получить устойчивый постоянный процесс.

При правильной конструкции и точной настройке скорости циркуляции обеих жидкостей потери тепла сводятся к минимуму.

Применение аппарата позволяет использовать один источник нагрева для систем отопления и ГВС одновременно, снижая тем самым количество оборудования и расходы на теплоноситель. Прибор для горячего водоснабжения частного дома выгоден тем, что позволяет добиться большей автономности жилища и уменьшить зависимость от сетевых ресурсов.

[advice]Обратите внимание! Этот аппарат не является самостоятельным нагревателем, для работы ему требуется теплоноситель, уже имеющий нужную температуру среды.[/advice]

Для чего нужен

Теплообменник в системе отопления и ГВС может выполнять несколько функций:

  • Нагрев воды для бытовых нужд (системы отопления и ГВС).
  • Стабилизация работы (подогрев теплоносителя от горячей воды в собственном котле).

Отопление дома непосредственно через теплообменник требует наличия теплоносителя со стабильной и регулируемой температурой. Если использовать прямой подогрев теплоносителя в котле, температура будет постоянно меняться, добиться нужной степени нагрева будет очень сложно.

Решает эти проблемы аппарат, в котором регулировка параметров теплоносителя осуществляется плавно и эффективно.

Наличие горячего теплоносителя дает возможность нагрева воды для бытовых нужд.

Учитывая, что вода движется независимо друг от друга, можно использовать тепло одной системы для нагрева другой без всяких ограничений. Эта функция выполняется аппаратом, который осуществляет передачу тепловой энергии от теплоносителя к воде из системы отопления и ГВС, делая ее независимой от окружающих сетей и снимая зависимость от компаний-поставщиков.

[stop]Важно! Теплообменник для отопления частного дома — многоплановый механизм, позволяющее значительно экономить на горячем водоснабжении.[/stop]

От каких факторов зависит эффективность

На работоспособность влияют несколько факторов:

  • Конструкция устройства.
  • Режим работы, температура отдающего теплоносителя.
  • Величина потерь тепла или, проще, состояние внутренней поверхности трубок (отсутствие накипи или наслоений, работающих как теплоизолятор и снижающих способность к принятию или отдаче тепловой энергии).

Поскольку устройство выбирается на стадии проектирования и монтажа, а режим работы устанавливается при настройке системы отопления в целом, то наиболее важным фактором становится борьба с потерями. Для этого теплообменник бытовой периодически промывают и очищают с помощью различных средств, которых достаточно в продаже.

Для удаления накипи применяют кислотные составы, а жировые отложения очищаются с помощью каустической соды. После очистки устройство тщательно промывают и вновь подключают к оборудованию. Другим средством, осуществляющим профилактику и снижающим степень загрязнения, являются фильтры. С их помощью отсеиваются посторонние частицы, взвесь, жировые соединения. При этом, фильтры также подлежат периодической промывке или замене.

[warning]Обратите внимание! На отложение солей или появление накипи на стенках или поверхностях устройства в большой степени влияет скорость движения воды. Чем она выше, тем меньше возможность образования наслоений, но при этом снижается работоспособность. Теплообменник для каждого дома нуждается в правильном выборе режима работы.[/warning]

Классификация

Вне зависимости от модели, они делятся на стальные и чугунные. Такое деление возникло в процессе развития и формирования систем отопления и водоснабжения.

Традиционно использовались чугунные устройства, поскольку их было легче производить — отливка производилась быстрее и обходилась дешевле, чем изготовление стальных деталей, их сборка, герметизация и т.д.

Кроме того, отсутствие или дороговизна нержавеющих сталей не оставляла никаких вариантов.

Со временем возможности материалов уравнялись, а производственный процесс позволил изготавливать изделия любой сложности из нержавейки. При этом, от чугуна как материала не отказались, так как простота и скорость литьевого производства сохранили свою привлекательность. И по сей день приборы из обоих материалов производятся, активно используются.

Чугунный

Теплообменники из чугуна отличаются большим весом и массивностью. Отливка корпусов с тонкими стенками сложна и ненадежна, поэтому чугунный аппарат всегда значительно тяжелее, чем стальной. Кроме того, отрицательным свойством материала является его хрупкость.

При резких механических или термических воздействиях — ударах, резком заполнении холодного корпуса горячей водой — механизм может треснуть, что не поддается ремонту.

При этом, обычно чугунные корпуса имеют секционное строение, что позволяет изменять размеры и мощность устройства и удалять вышедшие из строя секции. Чугун подвержен коррозии, появлению на внутренней поверхности накипи. Эффективность теплоотдачи у таких механизмов довольно высока, хотя снижена возможность оперативного изменения режима работы.

Стальной

Стальные (нержавеющие) приборы полностью лишены недостатков своих чугунных собратьев. Они прочны, не разрушаются от ударов и резких перепадов температуры, в гораздо меньшей степени подвержены коррозии

(на нержавейку воздействует только электрохимическая коррозия). Сборка их производится прямо на заводе, что осложняет их ремонтопригодность.

Теплоотдача стали высока, она быстро набирает или отдает тепло, что при активных режимах использования может привести к усталостным напряжениям металла, появлению трещин или выходу прибора из строя.

Наиболее распространен пластинчатый теплообменник для отопления, представляющий собой набор плоских пластин с каналами для прохода греющей и нагреваемой среды. Большая площадь пластин способствует эффективной передаче тепла.

Типы моделей

Установлены приборы могут быть в разных точках, что влияет на их эффективность, а также требует различного конструктивного решения. В зависимости от вида и модели источника нагрева могут быть использованы разные типы:

Внутренние

Теплообменники, находящиеся непосредственно в нагревательных устройствах — котлах, печах и т.д. Установка в такой точке дает максимальную эффективность, так как практически отсутствуют потери на нагрев корпуса, на охлаждение теплоносителя во время транспортировки от нагревателя до аппарата.

Чаще всего такие устройства встроены в котел уже на стадии производства, что упрощает задачи по монтажным или наладочным работам — требуется лишь настройка оптимального режима функционирования.

Внешние

Внешние теплообменники устанавливаются отдельно от источника тепла. Такой способ применяется при невозможности или значительной удаленности источника от системы отопления. Например, если в доме используется отопление от сети ЦО, теплообменник бытовой для нагрева холодной воды будет являться внешним устройством. Эффективность такого устройства несколько ниже, чем у внутренних типов, что обусловлено меньшей температурой теплоносителя.

Какой вид лучше выбрать

Подбор теплообменника для гвс осуществляется в случае, если отопление подается не от котла, или в системе его не предусмотрено. Для местных систем отопления или при наличии подключения дома к системе ЦО выбор внешнего устройства очевиден, поскольку иных вариантов не имеется.

Подбор теплообменника производится по имеющимся параметрам системы и обусловлен строением котла, способом получения теплоносителя, величиной необходимого потребления воды и т.д.

Как произвести расчет

Расчет для теплообменника гвс производится путем довольно сложных вычислений, требующих специальной подготовки. Детальный расчет требует составления теплового баланса, учета устройств теплопередачи, расчета средней разности температур и т.д. Все эти операции требуют познаний в области теплотехники, которыми обладает далеко не каждый, а вероятность ошибки очень высока даже у специалиста.

Выход из положения можно найти в сети интернет — онлайн-калькуляторы, в достаточном количестве имеющиеся на сайтах производителей теплового оборудования, позволяют получить нужные данные просто и достаточно надежно. Для проверки расчет следует продублировать несколько раз, сопоставить полученные результаты для выбора наиболее верного.

Монтаж

Работы по монтажу представляют собой установку и подключение устройства к соответствующим магистралям. Теплообменник водяной необходимо подключить к системе ГВС. Порядок действий определяется типом конструкции устройства и точкой установки в помещении.

Как установить внутренний

Внутренний теплообменник обычно уже установлен и нуждается только в подключении к системе ГВС. Все необходимые действия — присоединение соответствующих патрубков в разрыв отвода от трубопровода ХВС и к вновь образованной линии ГВС.

Как установить внешний

Монтаж внешних устройств производится в непосредственной близости от сети питания. Производится подключение теплоносителя в разрыв питающей магистрали. Система ГВС подключается на выходной патрубок, на входной подключается отвод от ХВС. Выполняется настройка или запуск устройства.

[stop]Важно! Все входящие или выходящие линии должны быть оборудованы вентилями с обводными трубопроводами для отключения теплообменника при необходимости ремонта или обслуживания.[/stop]

Готовим механизм самостоятельно

Для самостоятельного изготовления следует, прежде всего, определиться с моделью устройства. Изготовить теплообменник для системы отопления своими руками проще всего бойлерного типа, поскольку такой вариант наиболее доступен и эффективен.

Упрощая, такое устройство представляет собой бочку с нагретым теплоносителем, внутри которой находится змеевик или трубная доска с множеством трубок для нагрева ГВС.

Вариантов может быть очень много, каждый мастер привносит в конструкцию какие-то свои идеи.

Водяная рубашка

Самодельный теплообменник водоводяной «водяная рубашка» — это тот самый вариант, о котором уже упоминалось. Труба (емкость), расположенная внутри другой трубы (емкости) с теплоносителем. Изготовление такой модели несложно, но потребует обеспечения герметичности большей емкости, что в домашних условиях непросто сделать. Температурные расширения, неминуемые при эксплуатации, оказывают отрицательное влияние на прочность сварного шва.

Эффективность системы прямо пропорциональна длине внутреннего трубопровода, для чего обычно используют змеевики или подобные устройства, увеличивающие длину и площадь соприкосновения поверхности трубы.

Распространенным вариантом является медная трубка, свернутая кольцами или зигзагами, омываемая горячим теплоносителем из большей емкости.

Трубная доска

Такой прибор представляет собой пучок трубок, присоединенных к двум плоским пластинам с отверстиями (отсюда и название). Пластины отсекают емкости, одна из которых имеет входной и выходной патрубки для поступления холодной воды и вывода нагретой. Вторая емкость служит для обеспечения циркуляции воды, увеличивает длину трубок и, соответственно, площади соприкосновения.

Вся конструкция помещается в корпус с горячим теплоносителем, который нагревает воду в трубках. Такая система требует участия умелого сварщика, так как количество трубок велико, требует качественного присоединения. Нарушение герметичности любого шва приведет к перемешиванию воды с теплоносителем, что недопустимо.

Полезное видео по теме

Теплообменник — несложное, эффективное устройство, необходимое в частном доме позволяет значительно сэкономить на поставках ресурсов. Самостоятельное изготовление прибора вполне возможно, но потребует определенных познаний и качественной сборки.

Теплообменники для горячей воды от отопления

Теплообменник для ГВС позволяет получать горячую воду прямо от отопительной системы. Этот прибор может обеспечивать вас большими объемами воды без дополнительного оборудования и расходов энергии. Пластинчатые теплообменники используются в многоквартирных и частных жилых домах, общественных зданиях и на производственных точках.

Пластинчатые теплообменники (ПТО) — это устройства, предназначенные для быстрого обмена теплом между двумя средами. Главная особенность этих приборов заключается в том, что они позволяют двум средам обмениваться теплом, не смешиваясь друг с другом. Поэтому ПТО идеально подходят для организации горячего водоснабжения с использованием энергии теплоносителя.

Пластинчатый теплообменник состоит из нескольких пластин, заключенных в общий корпус. Пластины находятся параллельно друг другу — так, чтобы между ними образовались каналы, по которым будут течь жидкие среды. Благодаря большой площади теплообмена, вода быстро нагревается, не смешиваясь при этом с теплоносителем.

Принцип работы теплообменника для горячей воды от отопления очень прост. Прибор подключается к контуру отопительной системы (последовательно или параллельно), чтобы по нему циркулировал теплоноситель. Вход вторичного контура теплообменника подключается к водопроводной трубе холодного водоснабжения — после прохождения через устройство вода нагревается и поступает непосредственно к кранам.

Двухступенчатая и параллельная схема подключения теплообменника

Теплообменные аппараты можно использовать:

  • в котельных;
  • в системах центрального отопления;
  • в местных отопительных системах;
  • в автономных системах отопления.

Использование теплообменных приборов для получения горячей воды имеет несколько весомых преимуществ:

  • Высокая производительность — если нужно подавать воду одновременно в несколько точек, прибор прекрасно справится с этой задачей.
  • Экономия — вам не нужны дополнительные источники энергии. А значит, в отличие от бойлеров и проточных нагревателей, такое устройство не расходует газ и электроэнергию.
  • Компактные размеры — теплообменник не занимает много места.
  • Простота монтажа и обслуживания — устройство легко подключается, а на профилактическую чистку и разборку уйдет всего несколько часов.

К недостаткам можно отнести необходимость чистки — прибор придется периодически очищать от накипи. Иногда для этого требуется разборка и механическая чистка, иногда — достаточно промывки специальным составом.

Чтобы прибор работал эффективно, нужно правильно подобрать его параметры: материал изготовления, число пластин, площадь теплообмена, диаметр соединения и т.д. А эти параметры, в свою очередь, зависят от условий эксплуатации. Поэтому для каждой системы пластинчатый теплообменник для горячей воды от отопления подбирается индивидуально — такой подбор называется расчетом теплообменника.

При расчете учитывается:

  • Тепловая нагрузка;
  • Предполагаемый суточный расход на одного потребителя;
  • Количество потребителей;
  • Количество точек водозабора;
  • Типы рабочих сред (вода, масло или пар).
  • Температура теплоносителя на входе и на выходе;
  • Температура воды на входе в теплообменник и желаемая температура горячей воды на выходе из него.

На основе всех этих параметров производятся расчеты, определяющие размеры и количество пластин, тип стали и другие характеристики. При этом важна не только точность расчетов, но и компетенция специалистов, которые должны проанализировать полученные данные и подобрать оптимальный вариант для заданных условий.

Бесплатный расчет стоимости теплообменника

Ошибки при расчетах могут привести к преждевременной поломке прибора, протечкам, быстрому загрязнению, чрезмерному расходу энергии и другим проблемам. Поэтому расчет должен производиться специалистами-теплотехниками.

Важно! Обращаем Ваше внимание, что данные расчеты сделаны для конкретных объектов с их теплофизическими свойствами и расчетными температурами!

Стоимость, представленная на сайте, является ознакомительной!

Точная и детальная информация определяется после теплотехнического расчета, в ходе которого будет определены: размер рамы, материалы пластин и уплотнений, их количество, толщины, компоновки.

Теплообменник Объект Цена
Аппарат теплообменный пластинчатый Ридан НН№14А-21-TMTL40 (Ду 50 мм)

Скачать пример расчета

Объект: 5 этажный жилой дом Температурные графики: Гор. сторона: 70/40 °С Холод. стор: 5/60 °С Кол-во квартир: 80 Кол-во людей: 140 118 867 руб с НДС На этот товар

возможны скидки!

Аппарат теплообменный пластинчатый Ридан НН№14А-17-TKTM62 (Ду 50 мм)

Скачать пример расчета

Объект: Детский сад Температурные графики: Гор. сторона: 75/50 °С Холод. стор: 5/60 °С Кол-во людей: 280 103 536 руб с НДС На этот товар

возможны скидки!

В компании «ТеплоПрофи» вы можете бесплатно заказать профессиональный расчет и узнать примерную цену прибора — просто напишите нам или заполните заявку на сайте.

Заказанный теплообменный аппарат будет бесплатно доставлен до терминала выдачи . Вы получите груз в указанное время. Все грузы застрахованы. За все время нами осуществлено более 4000 отправок по России.

Вы получаете технику, которая адаптирована к российским условиям и имеет все нужные сертификаты. Гарантия производителя, максимально низкие цены, возможность сервисного обслуживания у партнеров.

Пластинчатый теплообменник производится в России в заводских условиях с соблюдением всех технологических процессов, на современном оборудовании. Качественные материалы подвергаются многочисленным испытаниям.

Профессиональныйподбор оборудования

Все наши инженеры прошли подготовку по программам обучения ведущих производителей теплообменного оборудования. Имеют высшее техническое образование. Все ваши потребности будут учтены при подборе оборудования.

Заполните опросный лист в электронном виде на сайте и наш специалист свяжется с вами в течение 1 минуты!

Скачайте печатную форму опросного листа, заполните и направьте его в по электронной почте [email protected]

Теплообменник для горячей воды от отопления в частном доме

Главная » Отопление » Теплообменник для горячей воды от отопления в частном доме

Холодное и горячее водоснабжение – две инженерные системы, связанные с комфортными условиями проживания в частном доме. И если с водопроводом холодной воды все более или менее понятно, потому что это трубная разводка от насоса, который забор воды производит из колодца или скважины. То горячее водоснабжение – сеть более сложная, и условия ее эксплуатации в основном зависят от нагревательного элемента, в качестве которого чаще всего выступает отопительный котел. А так как котловых агрегатов очень много, имеется в виду их конструктивные особенности, то соответственно и вода в них будет нагреваться по-разному. Один из вариантов, который сегодня используется чаще остальных, это установленные в котле или вне него теплообменники для горячего водоснабжения частного дома.

Схема ГВС с установленным теплообменником

Свое название теплообменники получили по прямому своему назначению. То есть, в этих агрегатах происходит обмен температурами. А так как разговор идет о горячем водоснабжении, то понятно, что тепло от горячей воды передается холодной, чтобы на выходе она стала также горячей. А так как у ГВС нет свое источника тепла, то есть, напрямую вода в системе не нагревается от энергоносителя, то соответственно должен быть свой собственный нагреватель или система, которая нагревала бы воду. И такой системой выступает отопление.

Получается так, что горячая вода в отопительной системе проходит через теплообменник и часть своего тепла через стенки прибора отдает холодной воде, расположенной в какой-то емкости. И такие емкости называются бойлерами. А вся нагревательная технология называется косвенной, потому что нет прямого взаимодействия энергоносителя с конструкцией подогрева системы горячего водоснабжения.

Типы теплообменников

Самый простой теплообменник – это змеевик из металлической трубы. Понятно, что металл – идеальный материал с высокой теплопроводностью, а значит, передача тепла будет быстрой и максимально эффективной. И чем больше диаметр змеевика, чем больше в нем витков, тем интенсивнее он будет отдавать тепло, потому что таким образом увеличивается площадь теплообмена. Конечно, на интенсивность теплоотдачи будет влиять и разница между холодной водой в бойлере, и горячей в системе отопления. И чем разница будет меньше, тем лучше. Правда, необходимо отметить, что вода в скважине обычно составляет в среднем +10С, приплюсуйте сюда зимнюю температуру, то получается так, что при необходимости довести воду в ГВС до температуры +40-45С, нужно нагреть воду в отопительной системе до +80-90С.

Теплообменник-змеевик

Что касается материала, из которого змеевики теплообменники изготавливаются, то в основном используются или стальные, или чугунные приборы.
  • У обоих материалов высокая теплопроводность.
  • Стальные агрегаты весят меньше чугунных.
  • По показателю ударопрочности стальные выигрывают. Они не лопаются при ударах, как чугунные теплообменники. И в этом их большое преимущество.
  • Они также хорошо выдерживают перепады температур. То есть, оба материала держат высокие температуры, но при резком их изменении чугун трескается и лопается.
  • Правда, сталь быстрее коррозирует при соприкосновении с водой и кислородом. Если в теплообменнике постоянно находится вода (внутри и снаружи), то прослужит он долго, потому что в самой воде незначительная концентрация кислорода.

То есть, по многим техническим характеристикам стальные теплообменники лучше. В настоящее время эти приборы изготавливают и из медных труб. По всем показателям медные теплообменники превосходят и стальные, и чугунные, но у них есть один большой недостаток- слишком дорогое это удовольствие.

Внимание! Для изготовления змеевика из стали необходимо использовать трубу с минимальным диаметром 32 мм и толщиною стенки 5 мм.

Изготовление медного теплообменника

Пластинчатые теплообменники

Еще одна разновидность – это пластинчатые теплообменники для горячего водоснабжения. В основе их конструкции лежат гофрированные пластины, которые устанавливаются между плитами и сжимаются между собой специальными болтовыми соединениями.

По эффективности пластинчатые теплообменники превосходят трубные. Все дело в тех самых пластинах, за счет которых прибор и получил свое название. У них большая площадь теплоотдачи, их самих большое количество, нагреваются они от труб, которые пронизывают все пластины в четырех местах, отсюда, в принципе, и сильный их нагрев. На фото ниже показан такой агрегат.

Пластинчатый теплообменник

Но есть у этой разновидности одно большое преимущество – это возможность наращивать длину прибора за счет установки в него дополнительных пластин. При этом толщина самого гофрированного элемента небольшая (0,5-0,6 мм), а площадь теплоотдачи огромна. Даже установив дополнительно 10 элементов, можно повысить теплоотдачу прибора на 10-15%.

Внимание! Движение жидкости в коллекторах теплообменника создает турбулентность, которая увеличивает теплоотдачу прибора за счет самоочищения гофрированных пластин от различного рода наслоений и накипи.

Сами пластины изготавливаются из коррозионностойкой стали методом штамповки. Для герметизации стыков между собой и трубами коллекторов используются резиновые прокладки.

Технология прямого нагрева

О косвенном нагреве воды сказано, но есть и еще одна технология нагрева, которая называется прямой. То есть, теплообменник в системе горячего водоснабжения устанавливается непосредственно в топку отопительного котла. То есть, производится нагрев прибора непосредственно энергоносителем. Как показывает практика, в такой системе ГВС обычно устанавливаются агрегаты комбинированного типа. в основе их конструкции лежит трубный змеевик, по которому движется холодная вода. А для усиления теплоприема дополнительно устанавливаются пластины, тем самым увеличивая интенсивность забора теплоэнергии. На фото ниже такой агрегат показан. Кстати, эти приборы называются первичными.

Первичный теплообменник

Изготавливают их чаще всего или из нержавеющей стали, или из медного сплава. Необходимо отметить, что данный тип теплообменных приборов подвергается большим нагрузкам. Это касается не только температуры. Все дело в том, что внутри труб происходят процессы под действием высокой температуры, которые приводят к быстрому отложению на стенках минералов и различных солей. А это уменьшение диаметра трубы, а следствие – снижение интенсивности теплоотдачи в сторону проходимой по трубам воде. Поэтому очень важно, эксплуатируя водопроводную систему частного дома, уделять внимание качеству забираемой из скважины или колодца воды. А самое простое в этом случае – это установить фильтра разного назначения, то есть, организовать грамотно систему водоочистки.

Есть еще один вариант, связанный с нагревом воды для ГВС. Это установка бака на дымоход отопительного котла. В принципе, функции теплообменника здесь сыграет именно дымоходная труба, на которую водяной бак будет установлен и закреплен. Такая конструкция теплообменника для горячего водоснабжения частного дома достаточно эффективна, и при этом очень экономична. То есть, здесь нет сложных приборов и конструкций. Правда, необходимо обратить внимание на материал, из которого часть дымохода будет сооружаться. В данном случае лучше всего использовать трубы из нержавейки. Они не только легко справляются с коррозионными процессами, но и хорошо выдерживают высокие температуры, под действием которых не коробятся и не лопаются. Правда, стоить будет такой дымоход недешево. И это, в принципе, единственный минус устройства.

Установка теплообменника в топку печи

Заключение по теме

Выбрать ту или иную модель теплообменного устройства по конструктивным особенностям – это, значит, выбрать саму систему горячего водоснабжения. А точнее сказать, подход к реализации принципа нагрева воды для ГВС. Поэтому еще на стадии проектирования и планирования систем отопления и горячего водоснабжения надо учитывать, каким способом будет производиться нагрев воды.

Похожие статьи

otepleivode.ru

Горячая вода от теплообменника, если нужно много горячей воды - Отопление дома своими руками

Применяемые в быту теплогенераторы (навесные котлы, проточные нагреватели, недорогие бойлеры) способны приготовить горячую воду для домашних нужд, с небольшой производительностью — 3-11 л/мин. Этого объема хватает для одновременной подачи воды в 1-2, максимум 3 точки разбора.

Если планируется большее количество точек, например небольшая гостиница или частное предприятие общественного питания, то получаемая горячая вода от теплообменника, как раз, то, что нужно. Для этого, можно применить пластинчатый теплообменник, который подключают к системе отопления по следующей схеме:

Схема подключения теплообменника к системе отопления

Горячая вода от теплообменника дает производительность 2 м³/час или 33 л/мин, что с лихвой покрывает все требуемые нормы потребления воды. Конечно, если требуется увеличить объемы горячей воды, то можно поставить более мощный теплообменник.

Конструктивно, этот прибор собран из профильных пластин, создающих раздельные каналы протока теплоносителя отопительной системы и нагреваемой воды. Эти каналы чередуются через один: контур отопления — контур горячей воды — контур отопления — контур горячей воды и так далее:

Благодаря такой компоновке и малой толщине пластин, осуществляется быстрая передача тепла, позволяющая получать горячую воду с минимальными потерями.

В связи с малым весом паяного пластинчатого теплообменника, его можно не крепить к стене, но, для удобства монтажа, все таки, лучше установить его на самодельные кронштейны:

Для гидравлического подключения прибора следует запаковать на его резьбовые выпуски полипропиленовые быстроразъемные соединения «Американки» 32х1»:

Горячая вода от теплообменника — обвязка

Дальнейшую обвязку проводят полипропиленовой трубой 32 мм, с переходами под циркуляционные насосы отопления и рециркуляции:

Следует учесть, что горячая вода от теплообменника поступает от отопительной системы и, поэтому, рассчитывать мощность отопительного котла нужно с учетом мощности теплообменника.

Это тоже интересно  Горячее водоснабжение в частном доме

practikaotoplenia.ru

Теплообменник ГВС, горячее водоснабжение

 Организация горячего водоснабжения является одним из основных условий комфортной жизни. Существует множество различных установок и систем для подогрева воды в домашней сети ГВС, однако одним из наиболее эффективных и экономичных считается метод нагрева воды от сети отопления.

 Теплообменник для горячей воды подбирается индивидуально, исходя из запросов владельца и возможностей отопительного оборудования. Правильный расчет и грамотный монтаж системы позволят вам навсегда забыть про перебои в горячем водоснабжении.

Применение пластинчатого теплообменника для ГВС

 Нагрев воды от теплосети полностью обоснован с экономической точки зрения – в отличие от классических водонагревательных котлов, использующих газ или электроэнергию, теплообменник работает исключительно на отопительную систему. В результате конечная стоимость каждого литра горячей воды оказывается для домовладельца на порядок ниже.

Пластинчатый теплообменник для горячего водоснабжения использует тепловую энергию теплосети для нагрева обычной водопроводной воды. Нагреваясь от пластин теплообменника, горячая вода поступает к точкам водоразбора – кранам, смесителям, душевую в ванной комнате и пр.

 Важно учитывать, что вода-теплоноситель и нагреваемая вода никак не контактируют в теплообменнике: две среды разделены пластинами теплообменного аппарата, через которые осуществляется теплообмен.

Использовать воду из системы отопления в бытовых нуждах напрямую нельзя – это нерационально и зачастую даже вредно:

  • Процесс водоподготовки для котельного оборудования – достаточно сложная и дорогая процедура. 
  • Для умягчения воды часто используются химические реагенты, которые негативно сказываются на здоровье.
  • В трубах отопления с годами скапливается колоссальный объем вредных отложений.

 Однако использовать воду отопительной системы косвенно никто не запрещал – теплообменник ГВС обладает достаточно высоким КПД и полностью обеспечит вашу потребность в горячей воде.

Типы теплообменников для систем ГВС

Среди множества типов различных теплообменников в бытовых условиях используются только два – пластинчатые и кожухотрубные. Последние практически исчезли с рынка вследствие больших габаритов и низкого КПД.

Пластинчатый теплообменник ГВС представляет собой ряд гофрированных пластин на жесткой станине. Все пластины идентичны по размерам и конструкции, но следуют в зеркальном отражении друг к другу и разделяются специальными прокладками – резиновыми и стальными. В результате строгого чередования между парными пластинами образуются полости, которые заполняются теплоносителем или нагреваемой жидкостью – смешение сред полностью исключено. Через направляющие каналы две жидкости движутся навстречу друг другу, заполняя каждую вторую полость, и так же, по направляющим, выходят из теплообменника отдав/получив тепловую энергию.

Чем выше количество или размер пластин в теплообменнике – тем больше площадь полезного теплообмена и выше производительность теплообменника. У многих моделей на направляющей балке между станиной и запорной (крайней) плитой остается достаточно пространства, чтобы установить несколько плит аналогичного типоразмера. В этом случае дополнительные плиты всегда устанавливаются парами, иначе потребуется менять направление «вход-выход» на запорной плите.

Схема и принцип работы пластинчатого теплообменника ГВС

Все пластинчатые теплообменники можно разделить на:

  • Разборные (состоят из отдельных плит)
  • Паяные (герметичный корпус, не разборные)

Преимущество разборных теплообменников заключается в возможности их доработки (добавление или удаление пластин) – в паяных моделях эта функция не предусмотрена. В регионах с низким качеством водопроводной воды такие теплообменники можно разбирать и очищать от мусора и отложений вручную. 

Более высокой популярностью пользуются паяные пластинчатые теплообменники – из-за отсутствия зажимной конструкции они имеют более компактные размеры, чем разборная модель аналогичной производительности. Компания «МСК-Холод» производит подбор и продажу паяных пластинчатых теплообменников ведущих мировых брендов - Alfa Laval, SWEP, Danfoss, ONDA, KAORI, GEA, WTT, Kelvion (Кельвион Машимпэкс), Ридан. У нас вы можете купить теплообменник ГВС любой производительности для частного дома и квартиры.

Преимущество паяный теплообменников в сравнении с разборными
  • Небольшие габариты и вес
  • Более строгий контроль качества
  • Продолжительный срок службы
  • Устойчивость к высоким давлениям и температурам

Очистка паяных теплообменников выполняется безразборным методом. Если по истечении определенного периода эксплуатации начали снижаться теплотехнические характеристики, то в аппарат на несколько часов заливается раствор реагента, удаляющего все отложения. Перерыв в работе оборудования составит не более 2-3 часов.

Схемы подключения теплообменника ГВС

Теплообменник вода-вода имеет несколько вариантов подключения. Первичный контур всегда подключается к распределительной трубе теплосети (городской или частной), а вторичный – к трубам водоснабжения. В зависимости от проектного решения можно использовать параллельную одноступенчатую схему ГВС (стандартная), двухступенчатую смешанную или двухступенчатую последовательную схему ГВС.

Схема подключения определяется согласно нормам «Проектирования тепловых пунктов» СП41-101-95. В случае, когда соотношение максимального потока тепла на ГВС к максимальному потоку тепла на отопление (QГВСmax/QТЕПЛmax) определяется в границах ≤0,2 и ≥1 за основу принимается одноступенчатая схема подключения, если же соотношение определяется в пределах 0,2≤ QГВСmax/QТЕПЛmax ≤1, то в проекте используется двухступенчатая схема подключения.

Стандартная

Параллельная схема подключения считается наиболее простой и экономичной в реализации. Теплообменник устанавливается последовательно относительно регулирующей арматуры (запорного клапана) и параллельно теплосети. Для достижения высокого теплообмена системе требуется большой расход теплоносителя.

Двухступенчатая

При использовании двухступенчатой схемы подключения теплообменника нагрев воды для ГВС осуществляется либо в двух независимых аппаратах, либо в установке-моноблок. Вне зависимости от конфигурации сети схема монтажа значительно усложняется, но значительно повышается КПД системы и снижается расход теплоносителя (до 40%).

Подготовка воды выполняется в два этапа: на первом используется тепловая энергия обратного потока, которая нагревает воду примерно до 40°С. На втором этапе вода подогревается до нормированных показателей 60°С.

Двухступенчатая смешанная система подключения выглядит следующим образом:

Двухступенчатая последовательная схема подключения:

Последовательную схему подключения можно реализовать в одном теплообменном аппарате ГВС. Этот тип теплообменника более сложное устройство в сравнение со стандартными и стоимость его порядком выше.

Расчет теплообменника для ГВС

При расчете теплообменника ГВС учитываются следующие параметры:

  • Количество жильцов (пользователей)
  • Нормативный суточный расход воды на одного потребителя
  • Максимальная температура теплоносителя в интересующий период
  • Температура водопроводной воды в указанный период
  • Допустимые теплопотери (нормативно – до 5%)
  • Количество точек водозабора (краны, душ, смесители)
  • Режим эксплуатации оборудования (постоянный/периодический)

Производительность теплообменника в городских квартирах (подключение к муниципальной теплосети) зачастую рассчитывается исключительно по данным зимнего периода. В это время температура теплоносителя достигает 120/80°С. Однако в весенне-осенний период показатели могут упасть до 70/40°С, в то время, как температура воды в водопроводе остается критично низкой. Поэтому расчет теплообменника желательно проводить параллельно для зимнего и весенне-осеннего периодов, при этом никто не может дать гарантии, что расчеты окажутся на 100% верны – ЖКХ нередко «пренебрегают» общепринятыми стандартами обслуживания потребителей.

В частном секторе, при монтаже теплообменника к собственной системы отопления, точность расчета на ступень выше: вы всегда уверены в работе своего котла и можете указать точную температуру теплоносителя.

Наши специалисты помогут вам выполнить правильный расчет теплообменника для ГВС и подобрать наиболее подходящую модель. Расчет выполняется бесплатно и занимает не более 20 минут – укажите свои данные и мы вышлем вам результат.

msk-holod.ru

Теплообменник для горячей воды от отопления - фото, видео

Трудно представить современный дом или квартиру без горячего водоснабжения. Правда, цена вопроса сильно зависит от способа нагрева воды.

Часто применяют непосредственный нагрев: газовую колонку, проточный электронагреватель, бойлер. Хотя это не самый эффективный вариант. Намного экономичнее, проще и надежнее теплообменник для горячей воды от отопления.

При наличии источника тепла, в виде автономного или центрального отопления, энергию для подогрева воды можно получить оттуда, не тратясь на дорогостоящее электричество или газ.

Устройство и принцип работы

Теплообменник передает тепло от горячего теплоносителя холодному, при этом не происходит их перемешивание. В качестве теплоносителя используются вода, пар или масло. Для горячего водоснабжения источником тепла выступает теплоноситель системы отопления, а разогреваемой средой является холодная вода.

Конструктивно теплообменник состоит из группы гофрированных пластин, расположенных в параллельных плоскостях. Между ними идут каналы, по которым перемещается теплоноситель и нагреваемая жидкость, расположены они послойно и чередуются между собой. За счет такой конструкции возрастает площадь теплообмена.

Гофрирование выполняют в виде волн, которые ориентированы так, чтобы каналы соседних контуров располагались под углом друг к другу. Подключают входы и выходы по схеме, которая направляет жидкости навстречу одна другой.

Размер поверхности и материал пластин подбирают соответственно требуемой мощности теплообмена и вида теплоносителя. В современных высокоэффективных устройствах поверхность сформирована таким образом, что возбуждает завихрения у поверхности пластины, что увеличивает теплообмен, и не создает при этом заметного сопротивления потоку.

  • Не пропустите: Плюсы и минусы двухконтурного котла

Теплообменник включают в два контура:

  1. Последовательно в систему отопления или параллельно, при наличии регулирующих вентилей.
  2. Вход в холодный водопровод, а выход к потребителю ГВС.

Холодная вода протекает через теплообменник и нагревается от тепла системы отопления до нужной температуры, а затем попадает к потребителю.

Технические характеристики теплообменника

К основным характеристикам устройства можно отнести:

  • мощность (Вт);
  • предельная температура теплоносителя (°С);
  • производительность (л/час);
  • коэффициент гидросопротивления.

Мощность определяется площадью теплообмена, перепадом температур в двух контурах и числом пластин в теплообменнике.

Максимальная температура зависит от материала и способа соединения пластин.

Пропускную способность можно повысить, увеличив число пластин, так как их подключают фактически параллельно. То есть, каждая следующая пара пластин создает еще один канал для протока жидкости.

Как вы уже, наверное, догадались, большинство теплообменников разборные. Благодаря этому можно увеличивать и уменьшать число пластин и подбирать их тип и размеры. Производительность и мощность устройства должны быть достаточными для того, чтобы подогреть проточную холодную воду, но при этом в системе отопления не должна создаваться критическая ситуация.

Для стандартных случаев, таких как: обеспечение горячей водой дома, квартиры или частного хозяйства, продаются уже готовые теплообменники с фиксированными характеристиками.

Расчет теплообменника

Выбирают устройство по мощности и пропускной способности, но для более точного результата нужно знать и другие характеристики:

  • тип среды в обоих контурах;
  • температуру теплоносителя в системе отопления;
  • допустимое снижение температуры теплоносителя после теплообменника;
  • температуру холодной воды;
  • требуемую температуру ГВС;
  • максимальный расход горячей воды;
  • удельную теплоемкость жидкости в обоих контурах.

Что касается расхода горячей воды, то он составляет:

  • для раковин – 40 л/ч;
  • для ванны – 200 л/ч;
  • для душевой – 165 л/ч.

Если вы подсоедините посудомоечную и стиральную машины к ГВС, то расход для них возьмите из паспорта или инструкции. Собрав все данные, сам расчет поручите сделать специалисту, так будет надежнее.

Если при расчете выяснится, что мощности для нагрева требуемого количества горячей воды недостаточно, то можно сделать две ступени подогрева. На практике это выглядит как два теплообменника. В первой ступени выполняется предварительный нагрев, в ней как источник тепла используется обратка отопления, у которой пониженная температура. Во второй ступени вода нагревается окончательно, уже горячей водой, поступающей от котла или котельной.


Смотрите также