Вы здесь

Как вычислить точку росы при утеплении стен


Расчет точки росы на стене

При строительстве здания или отдельных его частей часто перед застройщиком возникает понятие точка росы.

Этот термин слышали все кто хоть раз менял окна, утеплял стены или менял систему отопления в своем жилье.

Итак, рассмотрим, что такое точка росы, зачем надо знать её расположение в стене и как её можно определить с помощью доступных подручных средств.

Определяем суть термина

При высокой температуре и влажности холодные стены покрываются росой

Если выражаться простым языком, то точка росы – это момент, когда внутренняя температура помещения и влажность значительно превышают температуру поверхности перекрытия. При этом на поверхности стены неизбежно конденсируется влага из воздуха. Влияние на этот момент оказывают:

  • влажность воздуха в помещении;
  • температура стен или перекрытий;
  • температура внутри здания.

Если в помещении влажно и жарко, то на холодном стакане сразу образуются капли росы.

Для чего данный термин используется при строительстве?Любые ограждения: стена или окно – это граница с внешним миром, а значит температура их поверхности отличается от средней в помещении.

Значит, в том месте, где на стене расположена точка росы, будет регулярно скапливаться влага. На нахождение точки росы оказывают влияние:

  • характеристики используемых при строительстве материалов и их толщина;
  • место монтажа, количество слоев и качество утеплителя.

Важно, чтобы точка росы находилась с внешней стороны стены здания. В противном случае мы получаем постоянно влажную поверхность и как следствие образование плесени, грибка, разрушение декоративного слоя и несущих характеристик конструкции.

Расчет точки росы

Многих владельцев квадратных метров интересует вопрос, как самостоятельно рассчитать точку росы в стене. Чисто теоретически в этом нет ничего сложного, особенно, если вы математик, физик или просто хорошо помните школьную программу.

Для этого необходимо воспользоваться формулой:

ТР = (b * λ(Т,RH))  / (a * λ(Т,RH)), где:

  • ТР – искомая точка;
  • а –константа равная значению 17,27;
  • b – константа равная значению 237,7;
  • λ(Т,RH) – коэффициент, который рассчитывается следующим образом:

λ(Т,RH) = (а*Т) / (b*T+ lnRH), где:

  • Т – внутренняя температура помещения;
  • RH – влажность в помещении, значение берется в долях, а не в процентах: от 0,01 до 1;
  • ln – натуральный логарифм.

Если в школе вы увлекались игрой в баскетбол или чтением Достоевского больше, чем логарифмами, не расстраивайтесь. Все уже посчитано в таблице данных тепловой защиты за номером СП 23-101-2004, составленной на основании замеров и расчетов научно-проектными организациями.

Наиболее вероятные значения в средних российских условиях указаны в таблице ниже:

Если вы решите рассчитать значение, то получите данные, сходные с указанными в таблице. Кроме всего прочего, для расчета можно воспользоваться онлайн – калькулятором.

Практическое применение

Знание величины значения точки росы важно при планировании утепления здания

На практике значение термина точки росы важно при утеплении стен здания. Для обеспечения оптимальных теплоизоляционных характеристик ограждающих частей здания необходимо знать не только величину значения точки росы, но и ее положение на поверхности или в теле стены.

Современные методы строительства допускают 3 варианта проведения работ и в каждом случае точка выпадения конденсата может быть разной:

  1. Здание, построенное из единого материала без дополнительной теплоизоляции. Если тело стены состоит из кирпича, камня или монолитного бетона, то при соблюдении технологии строительства в таких зданиях точка росы находится внутри стены. Её расположение тяготеет к внешнему краю поверхности. При условии снижения внешних температур точка росы будет смещаться внутрь стены. Если разница температур окажется значительной, то может наступить момент, когда точка росы окажется внутри помещения, и на стене выступит влага. Всем нам знакомая ситуация: запотевание окон зимой.

    При правильном утеплении снаружи точка росы будет располагаться внутри утеплителя

  2. Здание построено с укладкой слоя внешней теплоизоляции. При правильном расчете данная теплоизоляция является оптимальной. Правильно подобранные толщины материала позволят утеплить строение, при этом точка росы будет располагаться внутри слоя утеплителя.
  3. Строение с внутренним утепляющим слоем. В данном случае точка росы будет находиться близко к внутренней поверхности стены, а в случае похолодания сместится непосредственно к поверхности.

Исключение в случае с однотипной стеной составят, пожалуй, деревянные срубы. Дерево – природный материал, обладающий прекрасными качественными характеристиками низкой теплопроводности и высокой паропроницаемости. В таких зданиях точка росы всегда будет расположена ближе к внешней поверхности. Деревянные срубы почти никогда не требуют проведения работ по дополнительной теплоизоляции.

Последний вариант крайне нежелателен и производится только тогда, когда нет другого выхода. О том, как правильно утеплять стены дома, смотрите в этом видео:

Если всё же утеплитель укладывается внутри здания, то следует провести дополнительные мероприятия:

  • оставить воздушный карман между слоем теплоизоляции и облицовкой;
  • предусмотреть устройство вентиляционных отверстий и обогрев помещения с дополнительным уменьшением уровня влажности.

Что делать, чтобы вывести точку росы из дома наружу?

Как правильно поступать, когда дом уже построен и эксплуатируется, а стены начали сыреть? Всё выше сказанное говорит нам о том, что необходимо изменить факторы, влияющие на точку росы. А значит, можно либо усилить отопление, чтобы снизить уровень влажности, либо снизить разницу в температуре покрытий, а именно проложить слой внешней теплоизоляции.

Варианты утепления стен

Почему утепляем стены именно снаружи? Во-первых, это удобно. Во-вторых, в таком случае температуру внешней среды будет иметь не стена дома, а слой теплоизоляции. Кривая снижения температуры станет более пологой, и точка росы фактически сдвинется к краю теплоизоляционного слоя. Важные советы по данному вопросу смотрите в этом видео:

Чем толще покрытие, тем вероятнее смещение точки росы в тело теплоизоляции за пределы стены дома. Как результат, дома, хорошо утепленные снаружи, служат дольше и не требуют больших затрат на отопление.

Материал теплоизоляции

Пеноплекс рекомендуется для наружного утепления стен

Как мы уже разобрались, лучше использовать теплоизоляционный материал, который можно монтировать с наружной стороны здания. Как правило, речь идет о пеноплексе, пенопласте или минеральной вате.

Материал на основе минеральной ваты обладает хорошей паропроницаемостью. При этом частично влага задерживается в утеплителе и стекает вниз под действием силы тяжести. Утеплителю данное обстоятельство ничем не грозит, поскольку базальтовое или стеклянное волокно устойчиво к действию влаги.

Нелишним не будет устроить слой гидроизоляции в нижней части строения, чтобы предотвратить разрушение фундамента.

Материалы типа пеноплекса паронепроницаемы, поэтому при их монтаже следует оставить воздушный карман, чтобы отвести влагу с внутренней поверхности материала.

При соблюдении данных условий можно говорить о сохранности стен и эффективности утепления.

moyastena.ru

Точка росы в стене — расчет и нахождение

Определить точку росы в стене очень просто. Ниже будет приведен пример, как сделать расчет. Это может сделать каждый, кто заинтересован в вопросе правильного утепления.

Точка росы — это температура, при которой водяной пар начинает конденсироваться.

Что такое точка росы

Точка росы в стене может перемещаться по ее толщине при изменении температур внутри помещения и снаружи. Например, если внутри помещения стабильная температура, а на улице похолодало, то точка росы передвинется по толщине стены ближе к помещению.

Температура предмета, на котором начнет конденсироваться пар, т.е. точка росы, зависит в основном от двух параметров:

  • температуры воздуха;
  • влажности воздуха.

Например, при температуре внутри помещения +20 град и влажности 50%, температура точки росы будет (примерно) +12,9 градусов. Если в помещении появится предмет с такой температурой или ниже, то на нем образуется конденсат.

Например, когда открывается холодильник, то внутри него выпадает роса из поступающего теплого воздуха. Она выглядит как «туман идущий из холодильника».

Если на улице холодно, то где-то в стене будет температура, при которой начнется конденсация пара, и в этой точке будет увлажнение. Если стена тонкая, «холодная», и ее внутренняя поверхность охладится до 12,9 градусов или меньше (при указанных значениях температуры и влажности воздуха), то на ней выпадет роса, она станет мокрой, и очень быстро обзаведется плесенью.

При утеплении стен, конструкций дома, полезно сделать расчет точки росы для наибольших и наименьших значений влажности и температуры, чтобы знать в каких границах пространства будет перемещаться точка росы при изменении этих параметров.

Как выполняется расчет

В расчетах точки росы и толщины утепления не учитываются некоторые параметры, — давление, скорость движения воздуха, плотность материала… Поэтому говорить можно только о приближенных значениях. Но, это не критично, когда речь идет об определении толщины утеплителя.

Для определения точки росы в стене проще всего воспользоваться таблицами готовых примерных значений, и не пытаться самостоятельно заниматься расчетами. Тем более не стоит доверять самодельным программам из интернета, они часто не учитывают параметры и выдают ложные значения, а иногда — и по принципу случайных чисел.

Ниже приведена таблица расчетных значений точки росы в зависимости от температуры воздуха и его влажности. Это примерные значения, так как не учитывается влияние других факторов.

Например, можно определить, что для помещения с температурой внутри +22 градуса, и влажностью 60%, температура при которой будет конденсироваться водяной пар (точка росы) составит 13,9 градусов.

Стена с утеплителем — как определить место конденсации

Решить задачу нахождения точки росы в стене очень просто.Нужно знать:

  • коэффициент теплового сопротивления стены, ?1, Вт/(м•К);
  • коэффициент теплового сопротивления утеплителя, ?2, Вт/(м•К);
  • толщину стены, h2, м;
  • толщину утеплителя, h3, м;
  • температуру внутри помещения, t1,град. С;
  • влажность воздуха, который будет доходить до точки росы, %;
  • точку росы для данных температуры и влажности, град. С;
  • температуру снаружи, t2, град. С.

В грубом приближении принимается, что температура по толщине каждого слоя будет изменяться линейно.

Искомая величина — температура на границе слоев стены и утеплителя. Когда она будет найдена, можно построить график изменения температур в слое «стена-утеплитель» и по нему отыскать положение точки росы.

Для этого находится отношение теплового сопротивления стены к тепловому сопротивлению утеплителя, исходя из которого, определяется изменение температуры в одном из слоев, что даст возможность узнать температуру на границе.

Рассмотрим на примере.

Пример расчета

Пример условий следующий.Железобетонная стена h2=36 см, утеплена пенопластом h3=10 см. Коэффициент теплового сопротивления железобетона ?1=1,7 Вт/смК, пенопласта — ?2= 0,04 Вт/смК. Температура внутри t1=+20 град, снаружи t2=-10 градусов. Влажность внутри помещения и снаружи принимается одинаковой — 50%. Согласно таблицы, точка росы составит 9,3 градусов.

Тепловые сопротивления стены и утеплителя определяются как h/ ?, вт/м2К.

В данном примере тепловое сопротивление стены составит 0,36/1,7=0,21 вт/м2К., утеплителя 0,1/0,04= 2,5 вт/м2К.

Отношение тепловых сопротивлений первого слоя ко второму (стены к пенопласту) составит: n=0,21/2,5=0,084.Тогда перепад температур в первом слое (стена) составит, Т= t1- t2хn = 20-(-10)х0,084=2,52 град.

Соответственно температура на границе слоя будет равна t1-Т=20-2,52=17,48 град.

Теперь мы можем в масштабе построить примерный график перепадов температуры в слое стена — утеплитель и отметим на нем точку росы.

Из примерных расчетов и примерного графика можно узнать главное – точка росы находится в утеплителе, далеко от стены, т.е. даже ухудшение условий, с учетом погрешности расчетов, не повлечет пагубного увлажнения стены.

Пример определения места нахождения температуры конденсации внутри стены

Температура внутри +22 град, снаружи — 15 град (регион севернее), влажность — 50%, точка росы — 11,1 градусов. Стена толщиной 38 см из кирпича (1,5 кирпича +шов+штукатурка принимается все как «кирпичная кладка»).

Коэффициент теплового сопротивления для кирпичной кладки — 0,7 Вт/смК, для минеральной ваты — 0,05 Вт/смК (с учетом ее увлажнения в реальных условиях эксплуатации).Тепловое сопротивление стены: 0,38/0,7=0,54 вт/м2К., утеплителя 0,1/0,05= 2,0 вт/м2К.

Отношение тепловых сопротивлений первого слоя ко второму составит: n=0,54/2,0=0,27 , а перепад температур в пределах первого слоя будет Т= 22 — (-15)х0,27=9,99 град. Температура на границе слоев: 22- 9,99=12 град.

Как видим, ситуация «впритык». С повышением влажности, что обычное явление, с падением температуры внутри помещения, или в холодную зиму, точка росы будет «гулять» внутри стены.

Такое утепление для относительно «теплой» кирпичной стены, уже будет считаться недостаточным, и по положению точки росы и по нормативным значениям теплопотерь, через ограждающие конструкции.

Точку росы можно сдвинуть и нагревом помещения с помощью внутреннего отопления и его осушением. Естественно, что это крайняя мера, которую применяют лишь когда пришла пора «сушить стены». Точка росы в стене — расчет и нахождение

Какие значения нужно принимать для расчета

Обычно температура внутри помещения принимается 22 градуса, чаще у пола она ниже, а под потолком достигает 27 градусов. Для центральных регионов считается минимальной температура снаружи помещений -15 градусов, (допускается кратковременные понижения температуры до -20 — -25 градусов).

Для южных регионов — -7 градусов, с кратковременным понижением -15 — -20 градусов. (Минимальную температуру можно выбрать самостоятельно, — какая температура держится зимой постоянно? До каких значений она опускается кратковременно?)

Влажность воздуха в помещении обычно принимается средняя (но не маленькая) — 50%,. Здесь обычно имеется некоторый запас, так как часто зимой воздух в помещении суше, из-за активно работающего отопления, — 30 – 40%. Но во многих домах борются с сухостью воздуха, устанавливая увлажнители и разводя растения. Оптимальная же влажность – 50%, она же и расчетная.

Осенью и весной для пропускных утеплителей пар будет идти в обратном направлении — с улицы. Для расчета на «демисезон» по паропроницаемым утеплителям, влажность нужно принимать порядка 90%.

Где должна находиться точка росы

Утепление ограждения считается «нормальным» только когда точка росы в холодное время в основном (!) находится в утеплителе и не смещается в стену.

Что значит «в основном»?При максимальных отрицательных температурах, которые длятся обычно несколько дней, неделю, и наступают периодически, точка росы может смещаться и в стену.

Для стены из плотных тяжелых материалов, в этом нет ничего опасного. Но для стены из пористых материалов, которые как обычно очень хорошо пропускают пар и впитывают влагу, появление точки росы должны быть коротким, особенно когда они сочетаются с утеплителями-пароизоляторами.

Такие стены требуют наибольшего утепления, особенно с учетом того, что они сами по себе теплые. Что бы сместить точку росы потребуется в 2 раза больше утеплителя. С паропрозрачными утеплителями, они сочетаются намного лучше, так как здесь можно осуществить вывод влаги, но только при условии отличной вентиляции утеплителя.

Приведены наглядные графики температур для различных схем утепления. Точка росы примерно указана как 16 градусов, достигается, когда внутри дома особо комфортная обстановка +25 градусов, 55 – 60 % влажности.

  • 1 — стена без утеплителя;
  • 2 — недостаточный слой утепления — точка росы находится внутри стены. Ее постоянное нахождение вызовет намокание неплотной стены, нездоровую атмосферу, опасность разрушения материала, если стена слой утепления имеет большее сопротивление движению пара, чем сама стена (неправильное утепление);
  • 3 — достаточное утепление, точка росы в утеплителе (основное время), нормальное сохранение материалов стены и тепло в доме, если тепловое сопротивление конструкции не меньше нормативного, ведь для очень холодных стен сместить точку росы из них можно и маленьким слоем утепления;
  • 4 — внутреннее утепление – худшее решение. Точка росы на поверхности стены или близка к этому, влечет намокание стены, и ущерб здоровью жильцов, мокрое замораживание и разрушение конструкций. Применяется в безвыходных ситуациях при условии сплошного закрытия стены утеплителем-пароизолятором, который и предотвращает проникновение пара к точке росы. Т.е. образование конденсата невозможно из-за влажности близкой к 0.

В нормативах указаны тепловые сопротивления ограждающих поверхностей для конкретных климатических зон. Этот значением уменьшать запрещает нам государство.

Чаще норматив требует меньшую толщину утеплителя, чем та, что нужна для смещения точки росы в утеплитель. Поэтому подбирать утеплитель под все поверхности в принципе желательно и по условию смещения точки росы в утеплитель.

Эти значения сравниваются с нормативным требованием, а принимается, как правило, еще большее значение, кратное толщине утеплителей, который находится в продаже.

  • Вентилируемый фасад выгодно отличается тем, что при его создании нет …
  • Сруб из бревен – постоянно изменяющаяся конструкция. Наибольшие изменения происходя …

teplodom1.ru

Точка росы. расчет, определение

  • - это температура, до которой должен охладиться воздух, чтобы содержащийся в нём пар достиг состояния насыщения и начал конденсироваться в росу. Этот параметр зависит от давления воздуха.
  • По возможности избегайте образования точки росы. А, если это невозможно, то постарайтесь сдвинуть ее к внешним слоям и обеспечте необходимую вентиляцию этих увлажняемых слоев.
  • Причина №1. Высокая паропрозрачность внутренних слоев конструкции позволяют создать большое давление водянных паров в прохладных и холодных слоях конструкции, что, как я уже писал, приведет к повышенной конденсации.

    Решение проблемы точки росы

    Добавьте слабо проницаемых слоев внутри (пароизолцию) и/или добавьте вент зазор снаружи. Эта мера позволит сдержать поток водяных паров сквозь стены. Но не стоит переусердствовать т.к запертые пары внутри комнаты будут копиться и это приведет к ухудшении качества воздуха внутри помещений.

    Если условия эксплуатации здания особенно суровые (-20 и ниже), то стоит рассмотреть возможность принудительного поступления в помещение подогретого воздуха с помощью теплообменников или нагревателей. Это позволит использовать герметичные пароизоляционные материалы без риска испортить микроклимат в доме.

    Каталог материалов

    Как выполняется расчет теплопотерь?

    Расчет теплопотерь определяется на основании температуры внутреннего воздуха, температуры внутренней поверхности ограждающей конструкции и температуры уличного воздуха.

    Температура внутри стен меняется линейно. Угол наклона графика зависит от значения термического сопротивления материала в разных его слоях.

    Усредненное значение сопротивления теплопередачи внутри здания принимаем Ri = 0,13 м2 К / Вт. ГОСТ 8.524-85 и DIN 4108

    Термическое сопротивление остальных слоев Re соответствует перепаду температур между внутренней поверхностью стены и уличным воздухом. (Т поверхности стены - T за пределами здания ) dTe.

    Затем по следующей формуле:

    Ri / dTi = Re / dTe

    находим Re:

    Re = Ri * dTe / dTi

    Общее тепловое сопротивление R = Re + Ri

    R = Ri (1 + dTe / dTi)

    И, наконец, значение теплопотерь

    ТП = 1 / R

    Пример

    Температура в помещении: 20 ° C на поверхность стены: 18 ° C

    температура окружающей среды: -10 ° C

    dТ = 2 ° C DTE = 28 ° C

    Ri = 0,13 м2 К / Вт

    dТi = 2 ° C dTe = 28 ° C Ri = 0,13 м2 К / Вт R = R (1 + dTe / dТi) = 1,95 м2 К / Вт

    ТП = 0,5 Вт / м2 K

    Кроме теплопотерь отображаются зоны возможной конденсации .
  • Черный график показывает падение/увеличение температуры внутри ограждающей конструкции в градусах.
  • Синий график - температура точки росы. Если этот график соприкасается с графиком температуры, то эти зоны называются зонами возможной конденсации (помечены голубым). Если во всех точках графика температура точки росы ниже температуры материала, то конденсата/росы не будет.
  • xn--80ajbwpejjci7c.xn--p1ai

    Расчет точки росы онлайн

    Количество слоев стены: 1 слой 2 слоя 3 слоя 4 слоя 5 слоев

    1-ый слой Материал 1-го слоя: БЕТОНЫ И РАСТВОРЫ Железобетон Бетон на гравии или щебне из природного камня Плотный силикатный бетон Керамзитобетон на керамз. песке и керамзитопенобетон Р=1800 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1600 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1400 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1200 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1000 Керамзитобетон на керамз. песке и керамзитопенобетон Р=800 Керамзитобетон на керамз. песке и керамзитопенобетон Р=600 Керамзитобетон на керамз. песке и керамзитопенобетон Р=500 Керамзитобетон на кварцевом песке с поризацией Р=1200 Керамзитобетон на кварцевом песке с поризацией Р=1000 Керамзитобетон на кварцевом песке с поризацией Р=800 Перлитобетон Р=1200 Перлитобетон Р=1000 Перлитобетон Р=800 Перлитобетон Р=600 Аглопоритобетон и бетоны на топливных шлаках Р=1800 Аглопоритобетон и бетоны на топливных шлаках Р=1600 Аглопоритобетон и бетоны на топливных шлаках Р=1400 Аглопоритобетон и бетоны на топливных шлаках Р=1200 Аглопоритобетон и бетоны на топливных шлаках Р=1000 Бетон на зольном гравии Р=1400 Бетон на зольном гравии Р=1200 Бетон на зольном гравии Р=1000 Полистиролбетон Р=600 Полистиролбетон Р=500 Газо- и пенобетон. газо- и пеносиликат Р=1000 Газо- и пенобетон. газо- и пеносиликат Р=900 Газо- и пенобетон. газо- и пеносиликат Р=800 Газо- и пенобетон. газо- и пеносиликат Р=700 Газо- и пенобетон. газо- и пеносиликат Р=600 Газо- и пенобетон. газо- и пеносиликат Р=500 Газо- и пенобетон. газо- и пеносиликат Р=400 Газо- и пенобетон. газо- и пеносиликат Р=300 Газо- и пенозолобетон Р=1200 Газо- и пенозолобетон Р=100 Газо- и пенозолобетон Р=800 Цементно-песчаный раствор Сложный (песок. известь. цемент) раствор Известково-песчаный раствор Цементно-шлаковый раствор P=1400 Цементно-шлаковый раствор P=1200 Цементно-перлитовый раствор P=1000 Цементно-перлитовый раствор P=800 Гипсоперлитовый раствор Поризованный гипсо­перлитовый раствор P=500 Поризованный гипсо­перлитовый раствор P=400 Плиты из гипса P=1200 Плиты из гипса P=1000 Листы гипсовые обшивочные (сухая штукатурка) Глиняный обыкновенный кирпич Силикатный кирпич P=2000 Силикатный кирпич P=1900 Силикатный кирпич P=1800 Силикатный кирпич P=1700 Силикатный кирпич P=1600 Керамический кирпич Р=1600 Керамический кирпич Р=1400 Камень керамический Р=1700 Кирпича силикатного утолщенного Р=1600 Кирпича силикатного утолщенного Р=1400 Камень силикатный Р=1400 Камень силикатный Р=1300 Гранит. гнейс и базальт Мрамор Известняк Р=2000 Известняк Р=1800 Известняк Р=1600 Известняк Р=1400 Туф Р=2000 Туф Р=1800 Туф Р=1600 Туф Р=1400 Туф Р=1200 Туф Р=1000 ДРЕВЕСИНА И ИЗДЕЛИЯ ИЗ НЕЕ Сосна и ель поперек волокон Сосна и ель вдоль волокон Дуб поререк волокон Дуб вдоль волокон Фанера клееная Картон облицовочный Картон строительный многослойный Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=1000 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=800 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=400 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=200 Плиты фибролитовые и арболит на портландцементе Р=800 Плиты фибролитовые и арболит на портландцементе Р=600 Плиты фибролитовые и арболит на портландцементе Р=400 Плиты фибролитовые и арболит на портландцементе Р=300 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=175 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=150 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=125 Плиты льнокострич­ные изоляционные Плиты торфяные теплоизоляционные Р=300 Плиты торфяные теплоизоляционные Р=200 Пакля ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ Маты минераловатные прошивные Р=125 Маты минераловатные прошивные Р=100 Маты минераловатные прошивные Р=75 Маты минераловатные прошивные Р=50 Плиты минераловатные на синтетическом связующем Р=250 Плиты минераловатные на синтетическом связующем Р=200 Плиты минераловатные на синтетическом связующем Р=175 Плиты минераловатные на синтетическом связующем Р=125 Плиты минераловатные на синтетическом связующем Р=75 Плиты пенополистирольные Р=50 Плиты пенополистирольные Р=35 Плиты пенополистирольные Р=25 Плиты пенополистирольные Р=15 Пенополиуретан Р=80 Пенополиуретан Р=60 Пенополиуретан Р=40 Плиты из резольно­фенолформальдегидного пенопласта Р=100 Плиты из резольно­фенолформальдегидного пенопласта Р=75 Плиты из резольно­фенолформальдегидного пенопласта Р=50 Плиты из резольно­фенолформальдегидного пенопласта Р=40 Плиты полистиролбетонные теплоизоляционные Р=300 Плиты полистиролбетонные теплоизоляционные Р=260 Плиты полистиролбетонные теплоизоляционные Р=230 Гравий керамзитовый Р=800 Гравий керамзитовый Р=600 Гравий керамзитовый Р=400 Гравий керамзитовый Р=300 Гравий керамзитовый Р=200 Щебень и песок из перлита вспученного Р=600 Щебень и песок из перлита вспученного Р=400 Щебень и песок из перлита вспученного Р=200 Песок для строительных работ Пеностекло и газостекло Р=200 Пеностекло и газостекло Р=180 Пеностекло и газостекло Р=160 МАТЕРИАЛЫ КРОВЕЛЬНЫЕ, ГИДРОИЗОЛЯЦИОННЫЕ, ОБЛИЦОВОЧНЫЕ Листы асбестоцементные плоские Р=1800 Листы асбестоцементные плоские Р=1600 Битумы нефтяные строительные и кровельные Р=1400 Битумы нефтяные строительные и кровельные Р=1200 Битумы нефтяные строительные и кровельные Р=1000 Асфальтобетон Изделия из вспученного перлита на битумном связующем Р=400 Изделия из вспученного перлита на битумном связующем Р=300 Рубероид. пергамин. толь Линолеум поливинилхлоридный многослойный Р=1800 Линолеум поливинилхлоридный многослойный Р=1600 Линолеум поливинилхлоридный на тканевой подоснове Р=1800 Линолеум поливинилхлоридный на тканевой подоснове Р=1600 Линолеум поливинилхлоридный на тканевой подоснове Р=1400 МЕТАЛЛЫ И СТЕКЛО Сталь стержневая арматурная Чугун Алюминий Медь Стекло оконное 3-ий слой Материал 3-го слоя: БЕТОНЫ И РАСТВОРЫ Железобетон Бетон на гравии или щебне из природного камня Плотный силикатный бетон Керамзитобетон на керамз. песке и керамзитопенобетон Р=1800 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1600 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1400 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1200 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1000 Керамзитобетон на керамз. песке и керамзитопенобетон Р=800 Керамзитобетон на керамз. песке и керамзитопенобетон Р=600 Керамзитобетон на керамз. песке и керамзитопенобетон Р=500 Керамзитобетон на кварцевом песке с поризацией Р=1200 Керамзитобетон на кварцевом песке с поризацией Р=1000 Керамзитобетон на кварцевом песке с поризацией Р=800 Перлитобетон Р=1200 Перлитобетон Р=1000 Перлитобетон Р=800 Перлитобетон Р=600 Аглопоритобетон и бетоны на топливных шлаках Р=1800 Аглопоритобетон и бетоны на топливных шлаках Р=1600 Аглопоритобетон и бетоны на топливных шлаках Р=1400 Аглопоритобетон и бетоны на топливных шлаках Р=1200 Аглопоритобетон и бетоны на топливных шлаках Р=1000 Бетон на зольном гравии Р=1400 Бетон на зольном гравии Р=1200 Бетон на зольном гравии Р=1000 Полистиролбетон Р=600 Полистиролбетон Р=500 Газо- и пенобетон. газо- и пеносиликат Р=1000 Газо- и пенобетон. газо- и пеносиликат Р=900 Газо- и пенобетон. газо- и пеносиликат Р=800 Газо- и пенобетон. газо- и пеносиликат Р=700 Газо- и пенобетон. газо- и пеносиликат Р=600 Газо- и пенобетон. газо- и пеносиликат Р=500 Газо- и пенобетон. газо- и пеносиликат Р=400 Газо- и пенобетон. газо- и пеносиликат Р=300 Газо- и пенозолобетон Р=1200 Газо- и пенозолобетон Р=100 Газо- и пенозолобетон Р=800 Цементно-песчаный раствор Сложный (песок. известь. цемент) раствор Известково-песчаный раствор Цементно-шлаковый раствор P=1400 Цементно-шлаковый раствор P=1200 Цементно-перлитовый раствор P=1000 Цементно-перлитовый раствор P=800 Гипсоперлитовый раствор Поризованный гипсо­перлитовый раствор P=500 Поризованный гипсо­перлитовый раствор P=400 Плиты из гипса P=1200 Плиты из гипса P=1000 Листы гипсовые обшивочные (сухая штукатурка) Глиняный обыкновенный кирпич Силикатный кирпич P=2000 Силикатный кирпич P=1900 Силикатный кирпич P=1800 Силикатный кирпич P=1700 Силикатный кирпич P=1600 Керамический кирпич Р=1600 Керамический кирпич Р=1400 Камень керамический Р=1700 Кирпича силикатного утолщенного Р=1600 Кирпича силикатного утолщенного Р=1400 Камень силикатный Р=1400 Камень силикатный Р=1300 Гранит. гнейс и базальт Мрамор Известняк Р=2000 Известняк Р=1800 Известняк Р=1600 Известняк Р=1400 Туф Р=2000 Туф Р=1800 Туф Р=1600 Туф Р=1400 Туф Р=1200 Туф Р=1000 ДРЕВЕСИНА И ИЗДЕЛИЯ ИЗ НЕЕ Сосна и ель поперек волокон Сосна и ель вдоль волокон Дуб поререк волокон Дуб вдоль волокон Фанера клееная Картон облицовочный Картон строительный многослойный Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=1000 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=800 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=400 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=200 Плиты фибролитовые и арболит на портландцементе Р=800 Плиты фибролитовые и арболит на портландцементе Р=600 Плиты фибролитовые и арболит на портландцементе Р=400 Плиты фибролитовые и арболит на портландцементе Р=300 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=175 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=150 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=125 Плиты льнокострич­ные изоляционные Плиты торфяные теплоизоляционные Р=300 Плиты торфяные теплоизоляционные Р=200 Пакля ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ Маты минераловатные прошивные Р=125 Маты минераловатные прошивные Р=100 Маты минераловатные прошивные Р=75 Маты минераловатные прошивные Р=50 Плиты минераловатные на синтетическом связующем Р=250 Плиты минераловатные на синтетическом связующем Р=200 Плиты минераловатные на синтетическом связующем Р=175 Плиты минераловатные на синтетическом связующем Р=125 Плиты минераловатные на синтетическом связующем Р=75 Плиты пенополистирольные Р=50 Плиты пенополистирольные Р=35 Плиты пенополистирольные Р=25 Плиты пенополистирольные Р=15 Пенополиуретан Р=80 Пенополиуретан Р=60 Пенополиуретан Р=40 Плиты из резольно­фенолформальдегидного пенопласта Р=100 Плиты из резольно­фенолформальдегидного пенопласта Р=75 Плиты из резольно­фенолформальдегидного пенопласта Р=50 Плиты из резольно­фенолформальдегидного пенопласта Р=40 Плиты полистиролбетонные теплоизоляционные Р=300 Плиты полистиролбетонные теплоизоляционные Р=260 Плиты полистиролбетонные теплоизоляционные Р=230 Гравий керамзитовый Р=800 Гравий керамзитовый Р=600 Гравий керамзитовый Р=400 Гравий керамзитовый Р=300 Гравий керамзитовый Р=200 Щебень и песок из перлита вспученного Р=600 Щебень и песок из перлита вспученного Р=400 Щебень и песок из перлита вспученного Р=200 Песок для строительных работ Пеностекло и газостекло Р=200 Пеностекло и газостекло Р=180 Пеностекло и газостекло Р=160 МАТЕРИАЛЫ КРОВЕЛЬНЫЕ, ГИДРОИЗОЛЯЦИОННЫЕ, ОБЛИЦОВОЧНЫЕ Листы асбестоцементные плоские Р=1800 Листы асбестоцементные плоские Р=1600 Битумы нефтяные строительные и кровельные Р=1400 Битумы нефтяные строительные и кровельные Р=1200 Битумы нефтяные строительные и кровельные Р=1000 Асфальтобетон Изделия из вспученного перлита на битумном связующем Р=400 Изделия из вспученного перлита на битумном связующем Р=300 Рубероид. пергамин. толь Линолеум поливинилхлоридный многослойный Р=1800 Линолеум поливинилхлоридный многослойный Р=1600 Линолеум поливинилхлоридный на тканевой подоснове Р=1800 Линолеум поливинилхлоридный на тканевой подоснове Р=1600 Линолеум поливинилхлоридный на тканевой подоснове Р=1400 МЕТАЛЛЫ И СТЕКЛО Сталь стержневая арматурная Чугун Алюминий Медь Стекло оконное 5-ый слой Материал 5-го слоя: БЕТОНЫ И РАСТВОРЫ Железобетон Бетон на гравии или щебне из природного камня Плотный силикатный бетон Керамзитобетон на керамз. песке и керамзитопенобетон Р=1800 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1600 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1400 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1200 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1000 Керамзитобетон на керамз. песке и керамзитопенобетон Р=800 Керамзитобетон на керамз. песке и керамзитопенобетон Р=600 Керамзитобетон на керамз. песке и керамзитопенобетон Р=500 Керамзитобетон на кварцевом песке с поризацией Р=1200 Керамзитобетон на кварцевом песке с поризацией Р=1000 Керамзитобетон на кварцевом песке с поризацией Р=800 Перлитобетон Р=1200 Перлитобетон Р=1000 Перлитобетон Р=800 Перлитобетон Р=600 Аглопоритобетон и бетоны на топливных шлаках Р=1800 Аглопоритобетон и бетоны на топливных шлаках Р=1600 Аглопоритобетон и бетоны на топливных шлаках Р=1400 Аглопоритобетон и бетоны на топливных шлаках Р=1200 Аглопоритобетон и бетоны на топливных шлаках Р=1000 Бетон на зольном гравии Р=1400 Бетон на зольном гравии Р=1200 Бетон на зольном гравии Р=1000 Полистиролбетон Р=600 Полистиролбетон Р=500 Газо- и пенобетон. газо- и пеносиликат Р=1000 Газо- и пенобетон. газо- и пеносиликат Р=900 Газо- и пенобетон. газо- и пеносиликат Р=800 Газо- и пенобетон. газо- и пеносиликат Р=700 Газо- и пенобетон. газо- и пеносиликат Р=600 Газо- и пенобетон. газо- и пеносиликат Р=500 Газо- и пенобетон. газо- и пеносиликат Р=400 Газо- и пенобетон. газо- и пеносиликат Р=300 Газо- и пенозолобетон Р=1200 Газо- и пенозолобетон Р=100 Газо- и пенозолобетон Р=800 Цементно-песчаный раствор Сложный (песок. известь. цемент) раствор Известково-песчаный раствор Цементно-шлаковый раствор P=1400 Цементно-шлаковый раствор P=1200 Цементно-перлитовый раствор P=1000 Цементно-перлитовый раствор P=800 Гипсоперлитовый раствор Поризованный гипсо­перлитовый раствор P=500 Поризованный гипсо­перлитовый раствор P=400 Плиты из гипса P=1200 Плиты из гипса P=1000 Листы гипсовые обшивочные (сухая штукатурка) Глиняный обыкновенный кирпич Силикатный кирпич P=2000 Силикатный кирпич P=1900 Силикатный кирпич P=1800 Силикатный кирпич P=1700 Силикатный кирпич P=1600 Керамический кирпич Р=1600 Керамический кирпич Р=1400 Камень керамический Р=1700 Кирпича силикатного утолщенного Р=1600 Кирпича силикатного утолщенного Р=1400 Камень силикатный Р=1400 Камень силикатный Р=1300 Гранит. гнейс и базальт Мрамор Известняк Р=2000 Известняк Р=1800 Известняк Р=1600 Известняк Р=1400 Туф Р=2000 Туф Р=1800 Туф Р=1600 Туф Р=1400 Туф Р=1200 Туф Р=1000 ДРЕВЕСИНА И ИЗДЕЛИЯ ИЗ НЕЕ Сосна и ель поперек волокон Сосна и ель вдоль волокон Дуб поререк волокон Дуб вдоль волокон Фанера клееная Картон облицовочный Картон строительный многослойный Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=1000 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=800 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=400 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=200 Плиты фибролитовые и арболит на портландцементе Р=800 Плиты фибролитовые и арболит на портландцементе Р=600 Плиты фибролитовые и арболит на портландцементе Р=400 Плиты фибролитовые и арболит на портландцементе Р=300 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=175 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=150 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=125 Плиты льнокострич­ные изоляционные Плиты торфяные теплоизоляционные Р=300 Плиты торфяные теплоизоляционные Р=200 Пакля ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ Маты минераловатные прошивные Р=125 Маты минераловатные прошивные Р=100 Маты минераловатные прошивные Р=75 Маты минераловатные прошивные Р=50 Плиты минераловатные на синтетическом связующем Р=250 Плиты минераловатные на синтетическом связующем Р=200 Плиты минераловатные на синтетическом связующем Р=175 Плиты минераловатные на синтетическом связующем Р=125 Плиты минераловатные на синтетическом связующем Р=75 Плиты пенополистирольные Р=50 Плиты пенополистирольные Р=35 Плиты пенополистирольные Р=25 Плиты пенополистирольные Р=15 Пенополиуретан Р=80 Пенополиуретан Р=60 Пенополиуретан Р=40 Плиты из резольно­фенолформальдегидного пенопласта Р=100 Плиты из резольно­фенолформальдегидного пенопласта Р=75 Плиты из резольно­фенолформальдегидного пенопласта Р=50 Плиты из резольно­фенолформальдегидного пенопласта Р=40 Плиты полистиролбетонные теплоизоляционные Р=300 Плиты полистиролбетонные теплоизоляционные Р=260 Плиты полистиролбетонные теплоизоляционные Р=230 Гравий керамзитовый Р=800 Гравий керамзитовый Р=600 Гравий керамзитовый Р=400 Гравий керамзитовый Р=300 Гравий керамзитовый Р=200 Щебень и песок из перлита вспученного Р=600 Щебень и песок из перлита вспученного Р=400 Щебень и песок из перлита вспученного Р=200 Песок для строительных работ Пеностекло и газостекло Р=200 Пеностекло и газостекло Р=180 Пеностекло и газостекло Р=160 МАТЕРИАЛЫ КРОВЕЛЬНЫЕ, ГИДРОИЗОЛЯЦИОННЫЕ, ОБЛИЦОВОЧНЫЕ Листы асбестоцементные плоские Р=1800 Листы асбестоцементные плоские Р=1600 Битумы нефтяные строительные и кровельные Р=1400 Битумы нефтяные строительные и кровельные Р=1200 Битумы нефтяные строительные и кровельные Р=1000 Асфальтобетон Изделия из вспученного перлита на битумном связующем Р=400 Изделия из вспученного перлита на битумном связующем Р=300 Рубероид. пергамин. толь Линолеум поливинилхлоридный многослойный Р=1800 Линолеум поливинилхлоридный многослойный Р=1600 Линолеум поливинилхлоридный на тканевой подоснове Р=1800 Линолеум поливинилхлоридный на тканевой подоснове Р=1600 Линолеум поливинилхлоридный на тканевой подоснове Р=1400 МЕТАЛЛЫ И СТЕКЛО Сталь стержневая арматурная Чугун Алюминий Медь Стекло оконное

    2-ой слой Материал 2-го слоя: БЕТОНЫ И РАСТВОРЫ Железобетон Бетон на гравии или щебне из природного камня Плотный силикатный бетон Керамзитобетон на керамз. песке и керамзитопенобетон Р=1800 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1600 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1400 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1200 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1000 Керамзитобетон на керамз. песке и керамзитопенобетон Р=800 Керамзитобетон на керамз. песке и керамзитопенобетон Р=600 Керамзитобетон на керамз. песке и керамзитопенобетон Р=500 Керамзитобетон на кварцевом песке с поризацией Р=1200 Керамзитобетон на кварцевом песке с поризацией Р=1000 Керамзитобетон на кварцевом песке с поризацией Р=800 Перлитобетон Р=1200 Перлитобетон Р=1000 Перлитобетон Р=800 Перлитобетон Р=600 Аглопоритобетон и бетоны на топливных шлаках Р=1800 Аглопоритобетон и бетоны на топливных шлаках Р=1600 Аглопоритобетон и бетоны на топливных шлаках Р=1400 Аглопоритобетон и бетоны на топливных шлаках Р=1200 Аглопоритобетон и бетоны на топливных шлаках Р=1000 Бетон на зольном гравии Р=1400 Бетон на зольном гравии Р=1200 Бетон на зольном гравии Р=1000 Полистиролбетон Р=600 Полистиролбетон Р=500 Газо- и пенобетон. газо- и пеносиликат Р=1000 Газо- и пенобетон. газо- и пеносиликат Р=900 Газо- и пенобетон. газо- и пеносиликат Р=800 Газо- и пенобетон. газо- и пеносиликат Р=700 Газо- и пенобетон. газо- и пеносиликат Р=600 Газо- и пенобетон. газо- и пеносиликат Р=500 Газо- и пенобетон. газо- и пеносиликат Р=400 Газо- и пенобетон. газо- и пеносиликат Р=300 Газо- и пенозолобетон Р=1200 Газо- и пенозолобетон Р=100 Газо- и пенозолобетон Р=800 Цементно-песчаный раствор Сложный (песок. известь. цемент) раствор Известково-песчаный раствор Цементно-шлаковый раствор P=1400 Цементно-шлаковый раствор P=1200 Цементно-перлитовый раствор P=1000 Цементно-перлитовый раствор P=800 Гипсоперлитовый раствор Поризованный гипсо­перлитовый раствор P=500 Поризованный гипсо­перлитовый раствор P=400 Плиты из гипса P=1200 Плиты из гипса P=1000 Листы гипсовые обшивочные (сухая штукатурка) Глиняный обыкновенный кирпич Силикатный кирпич P=2000 Силикатный кирпич P=1900 Силикатный кирпич P=1800 Силикатный кирпич P=1700 Силикатный кирпич P=1600 Керамический кирпич Р=1600 Керамический кирпич Р=1400 Камень керамический Р=1700 Кирпича силикатного утолщенного Р=1600 Кирпича силикатного утолщенного Р=1400 Камень силикатный Р=1400 Камень силикатный Р=1300 Гранит. гнейс и базальт Мрамор Известняк Р=2000 Известняк Р=1800 Известняк Р=1600 Известняк Р=1400 Туф Р=2000 Туф Р=1800 Туф Р=1600 Туф Р=1400 Туф Р=1200 Туф Р=1000 ДРЕВЕСИНА И ИЗДЕЛИЯ ИЗ НЕЕ Сосна и ель поперек волокон Сосна и ель вдоль волокон Дуб поререк волокон Дуб вдоль волокон Фанера клееная Картон облицовочный Картон строительный многослойный Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=1000 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=800 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=400 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=200 Плиты фибролитовые и арболит на портландцементе Р=800 Плиты фибролитовые и арболит на портландцементе Р=600 Плиты фибролитовые и арболит на портландцементе Р=400 Плиты фибролитовые и арболит на портландцементе Р=300 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=175 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=150 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=125 Плиты льнокострич­ные изоляционные Плиты торфяные теплоизоляционные Р=300 Плиты торфяные теплоизоляционные Р=200 Пакля ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ Маты минераловатные прошивные Р=125 Маты минераловатные прошивные Р=100 Маты минераловатные прошивные Р=75 Маты минераловатные прошивные Р=50 Плиты минераловатные на синтетическом связующем Р=250 Плиты минераловатные на синтетическом связующем Р=200 Плиты минераловатные на синтетическом связующем Р=175 Плиты минераловатные на синтетическом связующем Р=125 Плиты минераловатные на синтетическом связующем Р=75 Плиты пенополистирольные Р=50 Плиты пенополистирольные Р=35 Плиты пенополистирольные Р=25 Плиты пенополистирольные Р=15 Пенополиуретан Р=80 Пенополиуретан Р=60 Пенополиуретан Р=40 Плиты из резольно­фенолформальдегидного пенопласта Р=100 Плиты из резольно­фенолформальдегидного пенопласта Р=75 Плиты из резольно­фенолформальдегидного пенопласта Р=50 Плиты из резольно­фенолформальдегидного пенопласта Р=40 Плиты полистиролбетонные теплоизоляционные Р=300 Плиты полистиролбетонные теплоизоляционные Р=260 Плиты полистиролбетонные теплоизоляционные Р=230 Гравий керамзитовый Р=800 Гравий керамзитовый Р=600 Гравий керамзитовый Р=400 Гравий керамзитовый Р=300 Гравий керамзитовый Р=200 Щебень и песок из перлита вспученного Р=600 Щебень и песок из перлита вспученного Р=400 Щебень и песок из перлита вспученного Р=200 Песок для строительных работ Пеностекло и газостекло Р=200 Пеностекло и газостекло Р=180 Пеностекло и газостекло Р=160 МАТЕРИАЛЫ КРОВЕЛЬНЫЕ, ГИДРОИЗОЛЯЦИОННЫЕ, ОБЛИЦОВОЧНЫЕ Листы асбестоцементные плоские Р=1800 Листы асбестоцементные плоские Р=1600 Битумы нефтяные строительные и кровельные Р=1400 Битумы нефтяные строительные и кровельные Р=1200 Битумы нефтяные строительные и кровельные Р=1000 Асфальтобетон Изделия из вспученного перлита на битумном связующем Р=400 Изделия из вспученного перлита на битумном связующем Р=300 Рубероид. пергамин. толь Линолеум поливинилхлоридный многослойный Р=1800 Линолеум поливинилхлоридный многослойный Р=1600 Линолеум поливинилхлоридный на тканевой подоснове Р=1800 Линолеум поливинилхлоридный на тканевой подоснове Р=1600 Линолеум поливинилхлоридный на тканевой подоснове Р=1400 МЕТАЛЛЫ И СТЕКЛО Сталь стержневая арматурная Чугун Алюминий Медь Стекло оконное 4-ый слой Материал 4-го слоя: БЕТОНЫ И РАСТВОРЫ Железобетон Бетон на гравии или щебне из природного камня Плотный силикатный бетон Керамзитобетон на керамз. песке и керамзитопенобетон Р=1800 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1600 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1400 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1200 Керамзитобетон на керамз. песке и керамзитопенобетон Р=1000 Керамзитобетон на керамз. песке и керамзитопенобетон Р=800 Керамзитобетон на керамз. песке и керамзитопенобетон Р=600 Керамзитобетон на керамз. песке и керамзитопенобетон Р=500 Керамзитобетон на кварцевом песке с поризацией Р=1200 Керамзитобетон на кварцевом песке с поризацией Р=1000 Керамзитобетон на кварцевом песке с поризацией Р=800 Перлитобетон Р=1200 Перлитобетон Р=1000 Перлитобетон Р=800 Перлитобетон Р=600 Аглопоритобетон и бетоны на топливных шлаках Р=1800 Аглопоритобетон и бетоны на топливных шлаках Р=1600 Аглопоритобетон и бетоны на топливных шлаках Р=1400 Аглопоритобетон и бетоны на топливных шлаках Р=1200 Аглопоритобетон и бетоны на топливных шлаках Р=1000 Бетон на зольном гравии Р=1400 Бетон на зольном гравии Р=1200 Бетон на зольном гравии Р=1000 Полистиролбетон Р=600 Полистиролбетон Р=500 Газо- и пенобетон. газо- и пеносиликат Р=1000 Газо- и пенобетон. газо- и пеносиликат Р=900 Газо- и пенобетон. газо- и пеносиликат Р=800 Газо- и пенобетон. газо- и пеносиликат Р=700 Газо- и пенобетон. газо- и пеносиликат Р=600 Газо- и пенобетон. газо- и пеносиликат Р=500 Газо- и пенобетон. газо- и пеносиликат Р=400 Газо- и пенобетон. газо- и пеносиликат Р=300 Газо- и пенозолобетон Р=1200 Газо- и пенозолобетон Р=100 Газо- и пенозолобетон Р=800 Цементно-песчаный раствор Сложный (песок. известь. цемент) раствор Известково-песчаный раствор Цементно-шлаковый раствор P=1400 Цементно-шлаковый раствор P=1200 Цементно-перлитовый раствор P=1000 Цементно-перлитовый раствор P=800 Гипсоперлитовый раствор Поризованный гипсо­перлитовый раствор P=500 Поризованный гипсо­перлитовый раствор P=400 Плиты из гипса P=1200 Плиты из гипса P=1000 Листы гипсовые обшивочные (сухая штукатурка) Глиняный обыкновенный кирпич Силикатный кирпич P=2000 Силикатный кирпич P=1900 Силикатный кирпич P=1800 Силикатный кирпич P=1700 Силикатный кирпич P=1600 Керамический кирпич Р=1600 Керамический кирпич Р=1400 Камень керамический Р=1700 Кирпича силикатного утолщенного Р=1600 Кирпича силикатного утолщенного Р=1400 Камень силикатный Р=1400 Камень силикатный Р=1300 Гранит. гнейс и базальт Мрамор Известняк Р=2000 Известняк Р=1800 Известняк Р=1600 Известняк Р=1400 Туф Р=2000 Туф Р=1800 Туф Р=1600 Туф Р=1400 Туф Р=1200 Туф Р=1000 ДРЕВЕСИНА И ИЗДЕЛИЯ ИЗ НЕЕ Сосна и ель поперек волокон Сосна и ель вдоль волокон Дуб поререк волокон Дуб вдоль волокон Фанера клееная Картон облицовочный Картон строительный многослойный Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=1000 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=800 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=400 Плиты древесно­волокн. и древесноструж., скопо­древесноволок. Р=200 Плиты фибролитовые и арболит на портландцементе Р=800 Плиты фибролитовые и арболит на портландцементе Р=600 Плиты фибролитовые и арболит на портландцементе Р=400 Плиты фибролитовые и арболит на портландцементе Р=300 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=175 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=150 Плиты волокнистые теплоизоляционные из отходов искусственного меха Р=125 Плиты льнокострич­ные изоляционные Плиты торфяные теплоизоляционные Р=300 Плиты торфяные теплоизоляционные Р=200 Пакля ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ Маты минераловатные прошивные Р=125 Маты минераловатные прошивные Р=100 Маты минераловатные прошивные Р=75 Маты минераловатные прошивные Р=50 Плиты минераловатные на синтетическом связующем Р=250 Плиты минераловатные на синтетическом связующем Р=200 Плиты минераловатные на синтетическом связующем Р=175 Плиты минераловатные на синтетическом связующем Р=125 Плиты минераловатные на синтетическом связующем Р=75 Плиты пенополистирольные Р=50 Плиты пенополистирольные Р=35 Плиты пенополистирольные Р=25 Плиты пенополистирольные Р=15 Пенополиуретан Р=80 Пенополиуретан Р=60 Пенополиуретан Р=40 Плиты из резольно­фенолформальдегидного пенопласта Р=100 Плиты из резольно­фенолформальдегидного пенопласта Р=75 Плиты из резольно­фенолформальдегидного пенопласта Р=50 Плиты из резольно­фенолформальдегидного пенопласта Р=40 Плиты полистиролбетонные теплоизоляционные Р=300 Плиты полистиролбетонные теплоизоляционные Р=260 Плиты полистиролбетонные теплоизоляционные Р=230 Гравий керамзитовый Р=800 Гравий керамзитовый Р=600 Гравий керамзитовый Р=400 Гравий керамзитовый Р=300 Гравий керамзитовый Р=200 Щебень и песок из перлита вспученного Р=600 Щебень и песок из перлита вспученного Р=400 Щебень и песок из перлита вспученного Р=200 Песок для строительных работ Пеностекло и газостекло Р=200 Пеностекло и газостекло Р=180 Пеностекло и газостекло Р=160 МАТЕРИАЛЫ КРОВЕЛЬНЫЕ, ГИДРОИЗОЛЯЦИОННЫЕ, ОБЛИЦОВОЧНЫЕ Листы асбестоцементные плоские Р=1800 Листы асбестоцементные плоские Р=1600 Битумы нефтяные строительные и кровельные Р=1400 Битумы нефтяные строительные и кровельные Р=1200 Битумы нефтяные строительные и кровельные Р=1000 Асфальтобетон Изделия из вспученного перлита на битумном связующем Р=400 Изделия из вспученного перлита на битумном связующем Р=300 Рубероид. пергамин. толь Линолеум поливинилхлоридный многослойный Р=1800 Линолеум поливинилхлоридный многослойный Р=1600 Линолеум поливинилхлоридный на тканевой подоснове Р=1800 Линолеум поливинилхлоридный на тканевой подоснове Р=1600 Линолеум поливинилхлоридный на тканевой подоснове Р=1400 МЕТАЛЛЫ И СТЕКЛО Сталь стержневая арматурная Чугун Алюминий Медь Стекло оконное

    Ваш брвузер не поддерживает рисование.

    prostobuild.ru

    Методики расчетов точки росы при утеплении дома

    Чтобы в доме было сухо и тепло при выполнении теплоизоляционных работ важно правильно определить точку росы. Если изначально расчет выполнен неправильно, стены начнут мокнуть, появятся следы конденсата. Причем ошибка станет заметной только через несколько лет. Исправить что-то будет крайне сложно, а потому все работы придется выполнять заново.

    Что такое точка росы?

    Это параметр, численно равный температуре, при которой из охлажденного воздуха начинает конденсироваться водяной пар, превращаясь в росу. Его значение может меняться по толщине стены при температурных колебаниях внутри и снаружи здания. Если внутри температура поддерживается на одном уровне, а на улице начнет холодать, точка росы начнет сдвигаться ближе к внутренней стене.

    На значение температуры, при котором начинает конденсироваться пар, влияют температура и влажность воздуха. Так, при температуре воздуха + 20 °С и влажности 50% роса будет выпадать на поверхности, охлажденной до +12,9 °С. Чтобы это проверить достаточно внести в помещение предмет, охлажденный ниже +12,9С. На нем обязательно появится конденсат. Если же, наоборот, открыть холодильник, в него начнет поступать теплый воздух, из которого выпадет роса. Внешне это будет похоже на туман, выходящий из холодильника.

    В стене дома также есть место, в котором будет конденсироваться пар, если на улице будет очень холодно. При недостаточной толщине стены и охлаждении ее поверхности до определенного уровня, роса начнет выступать внутри комнаты. Как итог, стена будет постоянно мокнуть и в скором времени покроется плесенью.

    Именно поэтому при утеплении следует обязательно выполнить расчет точки росы, учтя наибольшие и наименьшие значения влажности и температуры как внутри, так и снаружи. Это позволит узнать, как она будет смещаться в пространстве при изменении температуры и влажности. Опираясь на полученные значения, можно будет рассчитать минимальную толщину стен, при которых внутри дома будут комфортные условия.

    Как найти искомое место?

    В каком именно месте будет конденсироваться пар, во многом зависит от месторасположения утеплителя. Особенно это важно, если утепление было выполнено изнутри.

    Неутепленный дом

    Положение точки росы будет напрямую зависеть от погодных условий. При отсутствии значительных температурных колебаний наружного воздуха образование конденсата будет происходить ближе к наружной поверхности стены. Внутри здания при этом будет достаточно комфортно.

    В случае резкого похолодания, искомое место начнет медленно смещаться внутрь. Это может привести к постепенному насыщению внутренних помещений конденсатом и намоканию стен.

    Наружное утепление

    В этом случае следует грамотно подходить к выбору теплоизоляционного материала и его толщины, чтобы исключить намокание стен. Если теплоизоляция стен снаружи выполнена правильно, точка росы будет находиться внутри утеплителя.

    Если технология монтажа нарушена или толщина теплоизоляционного материала недостаточна, то уменьшить теплопотери будет крайне сложно.

    При усилении мороза внутри здания может повышаться влажность. Возможно также намокание стен.

    Внутреннее утепление

    Искомое место при утеплении изнутри будет располагаться между серединой стены и утеплителем. Это не лучший вариант, так как при повышенной влажности и резком снижении температуры воздуха конденсат начнет образовываться в месте стыка утеплителя и стены.

    Как следствие, может начаться разрушение утепленной поверхности и теплоизоляционного материала. Такой вариант при повышенной влажности возможен лишь в случае монтажа системы отопления, способной поддерживать температуру во всем доме на одном уровне.

    Если же при выполнении теплоизоляционных работ изнутри климатические особенности конкретного региона не были учтены, устранить возникшие проблемы будет крайне сложно. Единственно возможным выходом из такой ситуации будет повторное утепление стен. Стоит отметить, что внутреннее утепление, по мнению специалистов, значительно уступает наружному.

    Выполняем расчет

    При определении требуемого значения следует учесть сразу несколько факторов:

    • температуру внутри и снаружи дома;
    • влажность воздуха.

    Температура и относительная влажность

    Значение зависит от месторасположения строения. В большинстве случаев речь будет идти о 20 – 22 °C. Тем, кто проживает в районах, где пятидневка наиболее холодная, то есть бывает –31°C и ниже, указанное значение будет составлять 21–23 °C.

    Допустимое значение несколько отличается. Для холодных регионов оно составит 20 – 24 °C. Для средней полосы температурный диапазон расширится до 18 – 24 °C. Когда выполняется расчет, обычно берется в первом случае 20 °C, во втором – 22 °C.

    Допустимый показатель относительной влажности колеблется в пределах 35– 60%. Для расчетов можно взять 50–55%.

    Ищем табличное значение

    Чтобы найти искомое значение, стоит воспользоваться специальной таблицей, в которой значение конденсации представлено в зависимости от температуры и влажности. Для этого, определившись с температурой и влажностью, можно найти искомое значение в месте их пересечения. Так, если влажность принята равной 55%, а температура 21°C, точка росы равна 11,6 °C. Это значит, что там, где стена охладится до 11,6 °C, выпадет конденсат.

    Точное значение

    Чтобы получить более точную цифру можно определить значение конденсации по реальным данным. Для этого следует обзавестись такими инструментами:

    • обычным термометром;
    • гигрометром;
    • бесконтактным термометром. При его отсутствии можно воспользоваться обычным.

    Поиск значения стоит начать с измерения температуры воздуха на расстоянии 60 см от поверхности пола. Больший отступ от поверхности пола приведет к получению некорректных данных. Замеры в этом случае часто проводят, положив термометр на стол.

    После этого выполняется замер влажности в помещении с помощью гигрометра. Сделать это следует в том же месте, где замерялась температура. Поиск значения конденсации производится в той же последовательности, как описано выше.

    А нужно ли утепление?

    Иногда бывает сложно определиться, насколько необходимы теплоизоляционные работы. Прежде чем приступить к утеплению стен, стоит с помощью специального бесконтактного термометра найти температуру поверхности, расположенную на расстоянии приблизительно 60 см от плоскости пола.

    При отсутствии такого измерительного инструмента, можно воспользоваться обычным термометром. Для этого градусник надо обернуть тонкой тряпкой и положить на поверхность, температуру которой предстоит узнать. Через четверть часа можно будет снять показания.

    Теперь предстоит сравнить табличное значение конденсации и температуру поверхности. Если разница будет больше 4 градусов, можно смело утверждать, что в помещении повышенная влажность, а точка росы находится внутри.

    Самостоятельно справиться с проблемой будет крайне сложно. Желательно обратиться за помощью к специалистам, которые смогут правильно выполнить расчет оптимальной толщины теплоизоляционного материала и его характеристик.

    Определяем место конденсации

    Для того чтобы выполнить расчет необходимо знать:

    • коэффициенты теплового сопротивления стены и утеплителя, λ1 и λ2, Вт/(м•К);
    • толщину стены и утеплителя, h2 и h3 , м;
    • температуру воздуха внутри дома, t1, °С;
    • влажность воздуха, %;
    • точку росы, °С;
    • температуру за пределами здания, t2, °С.

    Прежде чем приступить к расчету, примем, что по толщине всех слоев изменение температуры будет линейным. Необходимо найти температуру в месте соприкосновения стены и утеплителя. После этого надо будет построить график, отражающий изменение температуры по толщине стены. Построенный график поможет найти искомую точку.

    Для этого следует найти отношение значение теплового сопротивления стены и утеплителя. Воспользовавшись специальной формулой, можно будет найти температуру на границе слоя. Зная температуру с одной и с другой стороны слоя, не составит труда построить линейный график. По нему можно будет отследить изменение температуры в по всей толщине стены, чтобы понять, в каком именно месте будет образовываться конденсат.

    Пример расчета

    Чтобы выполнить расчет, примем, что у нас есть железобетонная стена h2=36 см, утепленная пенопластом толщиной h3=10 см. У железобетона коэффициент теплового сопротивления равен λ1=1,7 Вт/смК. Для пенопласта этот показатель λ2= 0,04 Вт/смК. Внутри дома температура t1= +20 град, за его пределами – t2= -10 градусов. Влажность воздуха внутри и снаружи примем одинаковой – 50%. По таблице значение конденсации составит 9,3 градуса.

    Чтобы найти тепловое сопротивление стены и утеплителя необходимо найти отношение их толщины и коэффициента теплового сопротивления h/ λ. Получаем для стены h2/λ1=0,36/1,7=0,21 вт/м²К, утеплителя h3/λ2 0,1/0,04= 2,5 вт/м²К.

    Далее определяем отношение теплового сопротивления стены и пенопласта n=0,21/2,5=0,084. Учтя найденное значение, можно найти перепад температур следующим образом: Т= t1-t2n = 20-(-10)0,084=2,52 град.

    Отсюда, на границе слоя температура будет t1-Т=20-2,52=17,48 град.

    Чтобы найти, где будет находиться искомое место, следует построить примерный график, характеризующий перепад температуры по толщине стены, проведя прямую через две точки. В том месте, где температура будет 9,3 градуса, и будет образовываться конденсат.

    Анализируя полученный график, важно понять, будет ли место образования конденсации находиться в утеплителе или нет. В таком случае даже при значительном ухудшении погодных условий удастся избежать нежелательного увлажнения стены. Если же она окажется за пределами слоя теплоизоляционного материала, значит, самое время задуматься о достаточности толщины утеплителя.

    Если в настоящий момент улучшить теплоизоляцию стен не представляется возможным, то единственным выходом может стать обогрев помещения. Нагревая воздух изнутри, можно будет сместить точку конденсации в направлении улицы. Как следствие, внутри здания будет находиться намного комфортнее.

    x-teplo.ru

    Точка росы, пароизоляция и вентилируемый зазор в стене

    Для того чтобы понять, к каким последствиям приведёт отсутствие вентилируемого зазора в стенах, выполненных из двух и более слоев разных материалов, и всегда ли нужны зазоры в стенах, необходимо напомнить о физических процессах, происходящих в наружной стене в случае разности температур на её внутренней и наружной поверхностях.

    Как известно в воздухе всегда содержатся водяные пары. Парциальное давление пара зависит от температуры воздуха. С повышением температуры парциальное давление водяных паров увеличивается.

    В холодное время года парциальное давление паров внутри помещения значительно выше, чем снаружи. Под действием разницы давлений водяные пары стремятся попасть изнутри дома в область меньшего давления, т.е. на сторону слоя материала с меньшей температурой — на наружную поверхность стены. Также известно, что при охлаждении воздуха водяной пар, содержащийся в нём, достигает предельного насыщения, после чего конденсируется в росу.

    Точка росы – это температура, до которой должен охладиться воздух, чтобы содержащийся в нём пар достиг состояния насыщения и начал конденсироваться в росу.

    На приведённой диаграмме, Рис.1., представлено максимально возможное содержание водяного пара в воздухе в зависимости от температуры.

    Рис.1. График температуры точки росы. Максимально возможное содержание пара в воздухе в зависимости от

    температуры.

    Отношение массовой доли водяного пара в воздухе к максимально возможной доле при данной температуре называется относительной влажностью, измеряемой в процентах.

    Например, если температура воздуха составляет 20 °С, а влажность – 50%, это означает, что в воздухе содержится 50% того максимального количества воды, которое может там находится.

    Как известно строительные материалы обладают разной способностью пропускать содержащиеся в воздухе водяные пары, под действием разности их парциальных давлений. Это свойство материалов называется сопротивление паропроницанию, измеряется в м2*час*Па/мг.

    Кратко резюмируя вышесказанное, в зимний период воздушные массы, в состав которых входят водяные пары, будут проходить сквозь паропроницаемую конструкцию внешней стены изнутри наружу.

    Температура воздушной массы будет уменьшаться по мере приближения к внешней поверхности стены. 

    В сухой стене — пароизоляция и вентилируемый зазор

    Рис.2. Пример распределения температуры в толще наружной стены. малом теплосопротивлении материала стены;

    Точка росы в правильно спроектированной стене без утеплителя окажется в толще стены, ближе к наружной поверхности, где пар будет конденсироваться и увлажнять стену.

    Зимой, в результате превращения пара в воду на границе конденсации, наружная поверхность стены будет накапливать влагу.

    В теплое время года эта накопленная влага должна иметь возможность испариться.

    Необходимо обеспечивать смещение баланса между количеством поступающих в стену паров изнутри помещения и испарением из стены накопившейся влаги в сторону испарения.

    Баланс влагонакопления в стене можно смещать в сторону удаления влаги двумя путями:

    1. Уменьшать паропроницаемость внутренних слоев стены, сокращая тем самым количество пара в стене.
    2. И (или) увеличивать испарительную способность наружной поверхности на границе конденсации.

    Однослойные стены имеют одинаковое сопротивление паропроницанию по всей толщине, а также равномерное изменение температуры по толщине стены. Граница конденсации водяных паров в правильно спроектированной стене без утеплителя находится в толще стены, ближе к наружной поверхности. Это обеспечивает таким стенам положительный баланс удаления влаги из толщи стены во всех случаях, кроме помещений с повышенной влажностью.

    В многослойных стенах с утеплителем используются материалы с разным сопротивлением  паропроницанию. Кроме того, распределение температуры в толще многослойной стены не равномерное. На границе слоев в толще стены имеем резкие перепады температуры.

    Чтобы обеспечить требуемый баланс перемещения влаги в многослойной стене необходимо, чтобы сопротивление паропроницанию материала в стене уменьшалось по направлению от внутренней поверхности к наружной.

    В противном случае, если наружный слой будет иметь большее сопротивление паропроницанию, баланс влагоперемещения сместится в сторону накопления влаги в стене.

    Например.

    Сопротивление паропроницанию газобетона значительно меньше, чем у керамики. При фасадной отделке дома из газобетона керамическим кирпичом обязателен вентилируемый зазор между слоями. При отсутствии зазора блоки будут накапливать влагу.

    Вентилируемый зазор между лицевой кладкой из керамического кирпича и несущей стеной из керамзитобетонных блоков не нужен, т.к. сопротивление паропроницанию кирпичной облицовки меньше, чем у стены из керамзитобетонных блоков.

    При неправильном устройстве стены, влага в утеплителе будет накапливаться постепенно.

    Уже на второй, максимум третий-пятый отопительный период, можно будет ощутить существенное увеличение расходов на отопление. Связано это, естественно, с тем, что увеличилась влажность теплоизоляционного слоя и всей конструкции в целом, а соответственно существенно снизился показатель термического сопротивления стены.

    Влага из утеплителя будет передаваться и в соседние слои стены. На внутренней поверхности наружных стен может образовываться грибок и плесень.

    Кроме накопления влаги, в утеплителе стены происходит еще один процесс — замерзание сконденсировавшейся влаги. Известно, что периодическое замерзание и оттаивание большого количества воды в толще материала разрушает его.

    Стеновые материалы различаются по своей способности противостоять замерзанию конденсата. Поэтому, в зависимости от паропроницаемости и морозостойкости утеплителя, необходимо ограничивать общее количество конденсата, накапливающегося в утеплителе за зимний период.

    Например, минераловатный утеплитель имеет высокую паропроницаемость и очень низкую морозостойкость. В конструкциях с минераловатным утеплителем (стены, чердачные и цокольные перекрытия, мансардные крыши) для уменьшения поступления пара в конструкцию со стороны помещения всегда укладывают паронепроницаемую пленку.

    Без пленки стена имела бы слишком малое сопротивление паропроницанию и, как следствие, в толще утеплителя выделялось и замерзало бы большое количество воды.  Утеплитель в такой стене через 5-7 лет эксплуатации здания превратился бы в труху и осыпался.

    Толщина теплоизоляции должна быть достаточной для того, чтобы удерживать точку росы в толще утеплителя, рис.2а.

    При малой толщине утеплителя температура точки росы окажется на внутренней поверхности стены и пары будут конденсироваться уже на внутренней поверхности наружной стены, рис.2б.

    Понятно, что количество влаги, сконденсировавшейся в утеплителе, будет увеличиваться с ростом влажности воздуха в помещении и с увеличением суровости зимнего климата в месте строительства.

    Количество испаряемой из стены влаги в летнее время также зависит от климатических факторов — температуры и влажности воздуха в зоне строительства.

    Рис.3. Результат расчета влажностного режима трехслойной стены: керамзитобетон — 250 мм., утеплитель минераловатный — 100 мм., кирпич керамический — 120 мм. жилой дом в г. С.-Петербург.

    Накопления влаги в годичном цикле нет.

    Как видим, процес перемещения влаги в толще стены зависит от многих факторов. Влажностный режим стен и других ограждений дома можно рассчитать, Рис. 3.

    По результатам расчета определяют необходимость уменьшения паропроницаемости внутренних слоев стены  или необходимость вентилируемого зазора на границе конденсации.

    Результаты проведенных расчетов влажностного режима различных вариантов утепленных стен (кирпичные, ячеистобетонные, керамзитобетонные, деревянные) показывают, что в конструкциях с вентилируемым зазором на границе конденсации накопления влаги в ограждениях жилых зданий не происходит во всех климатических зонах России. 

    Многослойные стены без вентилируемого зазора необходимо применять, основываясь на расчете влагонакопления. Для принятия решения, следует обратиться за консультацией к местным специалистам, профессионально занимающимся проектированием и строительством жилых зданий. Результаты расчета влагонакопления типовых конструкций стен в месте строительства, местным строителям давно известны.

    «Стена каменная трехслойная с облицовкой из кирпича» — это статья об особенностях влагонакопления и утепления стен из кирпича или каменных блоков.

    Особенности влагонакопления в стенах с фасадным утеплением пенопластом, пенополистиролом

    Утеплители из вспененных полимеров — пенопласта, пенополистирола, пенополиуретана, обладают очень низкой паропроницаемостью. Слой плит утеплителя из этих материалов на фасаде служит барьером для пара. Конденсация пара может происходить только на границе утеплителя и стены. Слой утеплителя препятствует высыханию конденсата в стене.

    Для предотвращения накопления влаги в стене с полимерным утеплителем необходимо исключить конденсацию пара на границе стены и утеплителя. Как это сделать? Для этого необходимо сделать так, чтобы на границе стены и утеплителя температура всегда, в любые морозы, была бы выше температуры точки росы.

    Указанное выше условие распределения температур в стене обычно легко выполняется, если сопротивление теплопередаче слоя утеплителя будет заметно больше, чем у утепляемой стены. Например, утепление «холодной» кирпичной стены дома пенопластом толщиной 100 мм. в климатических условиях средней полосы России обычно не приводит к накоплению влаги в стене.

    Совсем другое дело, если пенопластом утепляется стена из «теплого» бруса, бревна, газобетона или поризованной керамики. А также, если для кирпичной стены выбрать очень тонкий полимерный утеплитель. В этих случаях температура на границе слоев может легко оказаться ниже точки росы и, чтобы убедиться в отсутствии влагонакопления, лучше выполнить соответствующий расчет.

    Выше на рисунке показан график распределения температуры в утепленной стене для случая, когда сопротивление теплопередаче стены больше, чем слоя утеплителя. Например, если стену из газобетона с толщиной кладки 400 мм. утеплить пенопластом толщиной 50 мм., то температура на границе с утеплителем зимой будет отрицательной. В результате будет происходить конденсация пара и накопление влаги в стене.

    Толщину полимерного утеплителя выбирают в два этапа:

    1. Выбирают, исходя из необходимости обеспечить требуемое сопротивление теплопередаче наружной стены.
    2. Затем выполняют проверку на отсутствие конденсации пара в толще стены.

    Если проверка по п.2. показывает обратное, то приходится увеличивать толщину утеплителя. Чем толще полимерный утеплитель — тем меньше риск конденсации пара и влагонакопления в материале стены. Но, это приводит к увеличению расходов на строительство.

    Особенно большая разница в толщине утеплителя, выбранного по двум вышеуказанным условиям, имеет место при  утеплении стен с высокой паропроницаемостью и низкой теплопроводностью. Толщина утеплителя для обеспечения энергосбережения получается для таких стен сравнительно маленькой, а для отсутствия конденсации — толщина плит должна быть неоправданно большой.

    Поэтому, для утепления стен из материалов с высокой паропроницаемостью и низкой теплопроводностью выгоднее использовать минераловатные утеплители. Это относится прежде всего к стенам из дерева, газобетона, газосиликата, крупнопористого керамзитобетона.

    Устройство пароизоляции изнутри обязательно для стен из материалов с высокой паропроницаемостью при любом варианте утепления и облицовки фасада.

    Для устройства пароизоляции внутреннюю отделку выполняют из материалов с высоким сопротивлением паропроницанию — на стену наносят грунтовку глубокого проникновения в несколько слоев, цементную штукатурку, виниловые обои или используют паронепроницаемую пленку.

    Все описанное выше относится не только к стенам, но и к другим конструкциям, ограждающим тепловой контур здания — чердачным и цокольным перекрытиям, мансардным крышам.

    Посмотрите видео, в котором наглядно показаны теплофизические процессы в утепленных скатах крыши. Аналогичные процессы происходят и в наружных стенах зданий.

    Прочитав эту статью, Вы узнали, как сделать стену сухой.

    Стена должна быть еще и теплой. Об этом читайте в следующей статье.

    Следующая статья:

    Предыдущая статья:

    domekonom.su

    Как рассчитать точку росы

    Одно из важнейших понятий в строительстве – точка росы. На этапе утепления стен это позволяет правильно подобрать вид и толщину теплоизоляционного материала, сформировать оптимальный микроклимат внутри строения. Определить точку росы можно несколькими способами. Однако нужно также знать, что делать с полученным результатом.

    Небольшой экскурс в физику явления

    Точка росы – это температура воздуха, при которой излишки содержащейся в нем влаги выпадают в виде конденсата. Почему ее становится слишком много? Дело в том, что теплый воздух удерживает большое количество водяных паров, холодный – гораздо меньше. Именно эта разница при перепаде температур образует конденсат. Примером явления служат капли воды на холодных водопроводных трубах или окнах, туман.

    Что еще нужно знать про точку росы:

    • Чем выше влажность, тем она ближе к температуре воздуха, и наоборот.
    • Ее значение не может быть выше температуры воздуха.
    • Конденсат всегда появляется на холодных поверхностях. Это объясняется тем, что теплый воздух рядом с ними охлаждается, и его влажность снижается.

    Единица измерения точки выпадения конденсата – градусы Цельсия.

    Точка росы в стене дома – почему ее важно знать

    Большую часть года между температурно-влажностным режимом улицы и помещения есть существенная разница. Именно поэтому в толще стен с утеплителем нередко появляются участки конденсатообразования. При изменении погодных условий они сдвигаются ближе к наружной или внутренней поверхности стены. То есть, к более холодному или теплому участку.

    Пример: температура воздуха стабильно равна 25°C, а влажность – 45%. В этом случае конденсат образуется на участке с температурой 12,2°C. При повышении влажности до 65% точка росы сдвигается на более теплый участок, где 18°C.

    Почему так важно знать местонахождение точки выпадения конденсата? Потому что она определяет, какой именно слой стенового «пирога» подвергается разрушающему воздействию влаги. Самый плохой вариант – когда намокает утеплитель. При таких условиях большинство теплоизоляционных материалов теряет свои свойства. Они деформируются, пропускают холодный воздух, гниют, теряют упругость. Особенно подвержена этим процессам минеральная вата.

    Полезное:   Ursa: широкий ассортимент утеплителей

    Варианты расположения проблемных зон

    Точка росы имеет свойство смещаться, однако чаще всего выделяют три зоны ее расположения:

    • Ближе к наружной поверхности стены. Такой вариант имеет место, если стена не утеплена. Появление проблемной зоны возможно также при наружном утеплении недостаточной толщины.
    • Ближе к внутренней поверхности стены. При отсутствии утепления конденсат в этом месте легко образуется в период похолодания. Внутреннее утепление смещает участок конденсатообразования в область между поверхностью стены и утеплителем. При наружном утеплении это явление встречается редко, если все расчеты были выполнены правильно.
    • В толще утеплителя. Для наружной теплоизоляции это оптимальный вариант. При внутреннем утеплении велик риск появления со стороны комнаты плесени и, как следствие, нарушения микроклимата.

    Обратите внимание! На образование конденсата в стене влияет не только температурно-влажностный режим со стороны улицы и помещения. Определяющими факторами являются также толщина конструкции, коэффициент теплопроводности применяемых материалов.

    Расчет точки росы

    Рассчитывают значение параметра несколькими способами. Это может быть онлайн-калькулятор, сводная таблица, специальный прибор, математическая формула.

    Использование данных таблицы

    Специальная таблица для расчета точки росы содержит приблизительные ее значения. Это обусловлено тем, что при их выведении учитывалась только температура воздуха и его относительная влажность. В левом столбце таблицы указана температура воздуха, в верхней строке – относительная влажность воздуха в процентах. На пересечении столбцов и строк как раз и получается нужное значение.

    Существует несколько вариантов таблиц. Однако чаще всего диапазон температур составляет -5°C..+30°C, а влажности – 30-95%. Применение таблицы удобно, если нужно произвести расчеты быстро. При возможности результат лучше перепроверить другим способом, например, с помощью специального калькулятора в режиме онлайн.

    Расчет по математической формуле

    Математическая формула для вычисления температуры конденсатообразования – сложная и громоздкая. Для выполнения расчетов используют две константные величины, фактическое значение температуры воздуха и относительной влажности. Последнюю нужно брать в объемных долях.

    В отличие от работы с таблицей, диапазон последних двух параметров больше. Формула позволяет учитывать температуру от 0 до +60°C, влажность – от 1 до 100%. Погрешность результата не превышает половины градуса Цельсия. Однако пользоваться формулой удобно лишь тогда, когда на это есть свободное время.

    Полезное:   Фахверк: общее понятие и внешний вид

    Расчет в программе-калькуляторе

    Специальные калькуляторы позволяют в онлайн-режиме рассчитать точку росы в стене дома. Найти их можно на специализированных сайтах. Для расчета понадобится ввести ряд исходных данных. От ресурса к ресурсу они разнятся, но стандартный набор включает в себя информацию о следующих параметрах:

    • материал стены;
    • количество ее слоев и их толщина;
    • температура снаружи и внутри дома;
    • влажность в помещении и на улице.

    Большинство калькуляторов не просто рассчитывают нужное значение. Они также выдают графики ее возможного перемещения и зоны конденсации влаги.

    Применение приборов для выполнения расчетов

    Вне зависимости от способа, которым будут выполняться расчеты, понадобятся исходные данные. Для их получения нужно запастись некоторыми приборами. Так, для определения температуры подойдет обычный термометр, а для определения влажности – гигрометр. Для удобства они объединены в таком устройстве, как цифровой термогигрометр. Все полученные значения выводятся на небольшой экран. Некоторые модели приборов определяют и температуру выпадения конденсата. Определить проблемную зону могут и некоторые модели строительных тепловизоров.

    Как сдвинуть точку росы в стене

    Если после проведения всех расчетов вас не устраивает расположение точки росы, стоит задуматься над ее смещением. Для этого можно:

    • увеличить слой утеплителя снаружи;
    • использовать материал с высокой паропроницаемостью;
    • демонтировать слой внутреннего утепления, перенеся его наружу;
    • корректировать микроклимат в помещении – установить принудительную вентиляцию, дополнительно нагревать воздух.

    Подходящий вариант выбирают, исходя из климатических условий региона проживания, конструктивных особенностей дома, финансовых возможностей и используемых строительных материалов.

    Игнорирование такого явления, как конденсация влаги в стеновом «пироге», может слишком дорого обойтись. Как минимум, это неприятный запах в помещении, постоянная сырость. Как максимум – большие колонии плесневых грибов, портящих внутреннюю отделку стен, разрушающих утеплитель и вредящих здоровью домочадцев. Таким образом, расчет точки росы имеет важное значение, если вы хотите возвести надежные и сухие стены для вашего дома.

    Закладка Постоянная ссылка.

    Понравилась статья?

    Оцените: Средний балл: 4,56 Оценок: 50 Загрузка...

    pro-karkas.ru


    Смотрите также